Antonie van Leeuwenhoek

, Volume 64, Issue 2, pp 145–163 | Cite as

Molecular aspects of lysine, threonine, and isoleucine biosynthesis inCorynebacterium glutamicum

  • Bernhard J. Eikmanns
  • Lothar Eggeling
  • Hermann Sahm
Article

Abstract

The Gram-positive bacteriumCorynebactericum glutamicum is used for the industrial production of amino acids, e.g. of L-glutamate and L-lysine. In the last ten years genetic engineering methods were developed forC. glutamicum and consequently, recombinant DNA technology was employed to study the biosynthetic pathways and to improve the amino acid productivity by manipulation of enzymatic, transport and regulatory functions of this bacterium. The present review summarizes the current knowledge on the synthesis and over-production of the aspartate derived amino acids L-lysine, L-threonine and L-isoleucine inC. glutamicum. A special feature ofC. glutamicum is its abilily to convert the lysine intermediate piperideine2,6-dicarboxylate to diaminopimelate by two different routes, i.e. by reactions involving succinylated intermediates or by the single reaction of diaminopimelate dehydrogenase. The flux distribution over the two pathways is regulated by the ammonium availability. The overall carbon flux from aspartate to lysine, however, is governed by feedback-control of the aspartate kinase and by the level of dihydrodipicolinate synthase. Consequently, expression oflysCFBR encoding a deregulated aspartate kinase and/or the overexpression ofdapA encoding dihydrodipicolinate synthase led to overproduction of lysine. As a further specific featureC. glutamicum possesses a specific lysine export carrier which shows high activity in lysine overproducing mutants. Threonine biosynthesis is in addition to control by the aspartate kinase tightly regulated at the level of homoserine dehydrogenase which is subject to feedback-inhibition and to repression.C. glutamicum strains possessing a deregulated aspartate kinase and a deregulated homoserine dehydrogenase produce lysine and threonine. Amplification of deregulated homoserine dehydrogenase in such strain led to an almost complete redirection of the carbon flux to threonine. For a further flux from threonine to isoleucine the allosteric control of threonine dehydratase and of the acetohydroxy acid synthase are important. The expression of the genes encoding the latter enzyme is additionally regulated at the transcriptional level. By addition of 2-oxobutyrate as precursor and by bypassing the expression control of the acetohydroxy acid synthase genes high isoleucine overproduction can be obtained.

Key words

isolecucine biosynthesis lysine threonine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Archer JAC, Solow-Cordero DE & Sinskey AJ (1991) A C-terminal deletion inCorynebacterium glutamicum homoserine dehydrogenase abolishes allosteric inhibition by L-threonine. Gene 107: 53–59PubMedGoogle Scholar
  2. Bardonnet N & Blanco C (1991) Improved vectors for transcriptional signal screening in corynebacteria. FEMS Microbiol Lett 84: 97–102Google Scholar
  3. Berges DA, DeWolf SJ, Dunn WE, Newman GL, Schmidt DJ, Taggart C & Gilvarg JJ (1986) Studies on the active site of succinyl-CoA: tetrahydodipicolinate N-succinyltransferase. J Biol Chem 261: 6160–6167PubMedGoogle Scholar
  4. Bondaryk RP & Paulus H (1985) Expression of the gene forBacillus subtilis aspartokinase II inEscherichia coli. J Biol Chem 260: 592–597PubMedGoogle Scholar
  5. Bonnassie S, Burini JF, Oreglia J, Trautwetter A, Patte J & Sicard AM (1990a) Transfer of plasmid DNA toBrevibacterium lactofermentum by electrotransformation. J Gen Microbiol 136: 2107–2112PubMedGoogle Scholar
  6. Bonnassie S, Oreglia J & Sicard AM (1990b) Nucleotide sequence of thedapA gene fromCorynebacterium glutamicum. Nucleic Acids Res 18: 6421PubMedGoogle Scholar
  7. Bröer S & Krämer R (1991) Lysine excretion byCorynebacterium glutamicum. 2. Energetics and mechanism of the transport system. Eur J Biochem 202: 137–143PubMedGoogle Scholar
  8. Bröer S, Eggeling L & Krämer R (1993) Strains ofCorynebacterium glutamicum with diffent lysine productivities may have different lysine excretion systems. Appl Environ Microbiol 59: 316–321Google Scholar
  9. Cadenas RF, Martin JF & Gil JA (1991) Construction and characterization of promoter-probe vectors for Corynebacteria using the kanamycin-resistance reporter gene. Gene 98: 117–121PubMedGoogle Scholar
  10. Chen NY & Paulus H (1988) Mechanism of expression of the overlapping genes ofBacillus subtilis aspartokinaseII. J Biol Chem 263: 9526–9532PubMedGoogle Scholar
  11. Chen NY, Jiang S, Klein DA & Paulus H (1993) Organization and nucleotide sequence of theBacillus subtilis diaminopimelate operon, a cluster of genes encoding the first three enzymes of diaminopimelate synthesis and dipicolinate synthase. J Biol Chem 268: 9448–9465PubMedGoogle Scholar
  12. Clepet C, Borne F, Krishnapillai V, Baird C, Patte JC & Cami B (1992) Isolation, organization and expression of thePseudomonas aeruginosa threonine genes. Mol Microbiol 6: 3109–3119PubMedGoogle Scholar
  13. Cohen GN (1983) The common pathway to lysine, methionine, and threonine. In: Herrmann KM & Somerville RL (Eds) Amino acids: Biosynthesis and genetic regulation (pp 147–172). Addison-Wesley Publishing Company, LondonGoogle Scholar
  14. Cohen GN & Saint-Geront I (1987) Biosynthesis of threonine, lysine, and methionine. In: Neidhardt FC, Ingraham JL, Brooks Low K, Magasanik B, Schaechter M & Umbarger HE (Eds)Escherichia coli andSalmonella typhimurium: Cellular and Molecular Biology, Vol I (pp 429–444). American Society for Microbiology, Washington, D.C.Google Scholar
  15. Cordes C, Möckel B, Eggeling L & Sahm H (1992) Cloning, organization and functional analysis ofilvA, ilvB andilvC genes fromCorynebacterium glutamicum.Gene 112: 113–116PubMedGoogle Scholar
  16. Cremer J, Treptow C, Eggeling L & Sahm H (1988) Regulation of enzymes of lysine biosynthesis inCorynebacterium glutamicum. J Gen Microbiol 134: 3221–3229PubMedGoogle Scholar
  17. Cremer J, Eggeling L & Sahm H (1990) Cloning thedapA-dapB cluster of the lysine-secreting bacteriumCorynebacterium glutamicum. Mol Gen Genet 220: 478–480Google Scholar
  18. Cremer J, Eggeling L & Sahm H (1991) Control of the lysine biosynthetic sequence inCorynebacterium glutamicum as analyzed by overexpression of the individual corresponding genes. Appl Environ Microbiol 57: 1746–1752Google Scholar
  19. Dunican LK & Shivnan E (1989) High frequency transformation of whole cells of amino acid producing coryneform bacteria using high voltage electroporation. Bio/Technology 7: 1067–1070Google Scholar
  20. Ebbighausen H, Weil B & Krämer R (1989) Isoleucine excretion inCorynebacterium glutamicum: evidence for a specific efflux carrier system. Appl Microbiol Biot 31: 184–190Google Scholar
  21. Eggeling I, Cordes C, Eggeling L & Sahm H (1987) Regulation of acetohydroxy acid synthase inCorynebacterium glutamicum during fermentation of α-ketobutyrate to L-isoleucine. Appl Microbiol Biotechnol 25: 346–351Google Scholar
  22. Eikmanns B, Kleinertz E, Liebl W & Sahm H (1991a) A family ofCorynebacterium glutamicum/ Escherichia coli shuttle vectors for gene cloning, controlled gene expression, and promoter probing. Gene 102: 93–98PubMedGoogle Scholar
  23. Eikmanns B, Metzger M, Reinscheid D, Kircher M & Sahm H (1991b) Amplification of three biosynthesis genes inCorynebacterium glutamicum and its influence on carbon flux in different strains. Appl Microbiol Biotechnol 34: 617–622PubMedGoogle Scholar
  24. Follettie MT, Shin HK & Sinskey AJ (1988) Organization and regulation of theCorynebacterium glutamicum hom-thrB andthrC loci. Mol Microbiol 2: 53–62PubMedGoogle Scholar
  25. Follettie MT, Peoples O, Agoropoulou C & Sinskey AJ (1993) Gene structure and expression of theCorynebacterium flavum N13ask-asd operon. J Bacteriol 175: 4096–4103PubMedGoogle Scholar
  26. Friden P, Tsui P, Okamoto K & Freundlich M (1984) Interaction of cyclic AMP receptor protein with theilvB biosynthetic operon inEscherichia coli. Nucleic Acids Research 12: 8145–8160PubMedGoogle Scholar
  27. Godon J, Chopin M & Ehrlich SD (1992) Branched-chain amino acid biosynthesis genes inLactococcus lactis subsp.lactis. J Bacteriol 174: 6580–6589PubMedGoogle Scholar
  28. Graves LM & Switzer RL (1990) Aspartokinase III, a new isozyme inBacillus subtilis 168. J Bacteriol 172: 218–223PubMedGoogle Scholar
  29. Han K, Archer JAC & Sinskey AJ (1990) The molecular structure of theCorynebacterium glutamicum threonine synthase gene. Mol Microbiol 4: 1693–1720PubMedGoogle Scholar
  30. Haynes JA & Britz ML (1990) The effect of growth conditions ofCorynebacterium glutamicum on the transformation frequency obtained by electroporation. J Gen Microbiol 136: 255–263Google Scholar
  31. Haziza C, Stragier P & Patte JC (1982) Nucleotide sequence of the asd gene ofEscherichia coli: Absence of a typical attenuation signal. EMBO Journal 1: 379–384PubMedGoogle Scholar
  32. Heery DM & Dunican LK (1993) Cloning of thetrp gene cluster from a tryptophan-hyperproducing strain ofCorynebacterium glutamicum: Identification of a mutation in thetrp leader sequence. Appl Environ Microbiol 59: 791–799PubMedGoogle Scholar
  33. Ishino S, Yamaguchi K, Shirahata K & Araki K (1984) Involvement of mesodiaminopimelate D-dehydrogenase in lysine biosynthesis inCorynebacterium glutamicum. Agr Biol Chem 48: 2557–2560Google Scholar
  34. Ishino S, Muzikami T, Yamaguchi K, Katsumata R & Araki K (1988) Cloning and sequencing of the meso-diaminopimelate-D-dehydrogenase (ddh) gene ofCorynebacterium glutamicum. Agric Biol Chem Tokyo 52: 2903–2909Google Scholar
  35. Kalinowski J, Bachmann B, Thierbach G & Pühler A (1990) Aspartokinase genes lysCα and lvsCβ overlap and are adjacent to the aspartate β-semialdehyde dehydrogenase gene asd inCorynebacterium glutamicum. Mol Gen Genet 224: 317–324PubMedGoogle Scholar
  36. Kalinowski J, Cremer J, Bachmann B, Eggeling L, Sahm H & Pühler A (1991) Genetic and biochemical analysis of the aspartokinase fromCorynebacterium glutamicum. Mol Microbiol 5: 1197–1204PubMedGoogle Scholar
  37. Katsumata R, Mizukami T, Kikuchi Y & Kino K (1986) Threonine production by the lysine producing strain ofCorynebacterium glutamicum with amplified threonine biosynthetic operon. In: Alacevic M, Hranueli D & Toman Z (Eds) Genetics of Industrial Microorganisms (pp 217–226). B. Pliva, ZagrebGoogle Scholar
  38. Katsumata R, Ozaki A, Oka T & Furuya A (1984) Protoplast transformation of glutamate producing bacteria with plasmid DNA. J Bacteriol 159: 306–311PubMedGoogle Scholar
  39. Keilhauer C, Eggeling L & Sahm H (1993) Isoleucine synthesis inCorynebacterium glutamicum: Molecular analysis of theilvB-ilvN-ilvC operon. J Bacteriol 175: 5595–5603PubMedGoogle Scholar
  40. Kinoshita S (1985) Glutamic acid bacteria. In: Demain AL & Solomon NA (Eds) Biology of Industrial Microorganisms (pp 115–142). The Benjamin/Cummings Publishing Company, Inc.Google Scholar
  41. Kinoshita S & Nakayama K (1978) Amino acids. In: Rose AH (Ed) Primary Products of Metabolism (pp 209–261), Academic Press, LondonGoogle Scholar
  42. Liebl W (1991) The genus Corynebacterium-nonmedical. In: Balows A, Trüper HG, Dworkin M, Harder W & Schleifer K-H (Eds) The Procaryotes, Vol II (pp 1157–1171). Springer Verlag, New York.Google Scholar
  43. Liebl W, Bayerl A, Stillner U & Schleifer KH (1989) High efficiency electroporation of intactCorynebacterium glutamicum cells. FEMS Microbiol Lett 65: 299–304Google Scholar
  44. Liebl W, Ehrmann M, Ludwig W & Schleifer KH (1991) Transfer ofBrevibacterium divaricatum DSM 20297,Brevibacterium flavum DSM 20412 and DSM 1412, andCorynebacterium lilium DSM 20137 toCorynebacterium glutamicum and their distinction by rRNA gene restriction patterns. Int J Syst Bacteriol 41: 225–260Google Scholar
  45. Lynn SP & Gardner JF (1983) The threonine operon ofEscherichia coli. In: Hermann KM & Somerville RL (Eds) Amino acids: Biosynthesis and genetic regulation (pp 173–190). Addison-Wesley Publishing Company, LondonGoogle Scholar
  46. Mackey CJ, Warburg RJ, Halvorson HO & Zahler SA (1984) Genetic and physical analysis of theilvBC-leu region inBacillus subtilis. Gene 32: 49–56PubMedGoogle Scholar
  47. Marcel T, Archer JAC, Mengin-Lecreulx D & Sinskey AJ (1990) Nucleotide sequence and organization of the upstream region of theCorynebacterium glutamicum lysA gene. Mol Microbiol 4: 1819–1830PubMedGoogle Scholar
  48. Martin JF (1989) Molecular genetics of amino acid-producing Corynebacteria. In: Baumberg S, Hunter I & Rhodes M (Eds) Society for General Microbiology Symposium 44 (pp 25–59). Cambridge University Press, Cambridge, UKGoogle Scholar
  49. Mateos LM, del Real G, Aguilar A & Martin JF (1987) Nucleotide sequence of the homoserine dehydrogenase (thrA) gene ofBrevibacterium lactofermentum. Nucleic Acids Research 24: 10598Google Scholar
  50. Mateos LM, del Real G & Martin JF (1987) Nucleotide sequence of the homoserine kinase (thrB) gene ofBrevibacterium lactofermentum. Nucleic Acids Research 15: 3922PubMedGoogle Scholar
  51. Matsui K, Miwa K & Sano K (1987) Two single-base-pair substitutions causing desensitization to tryptophan feedback inhibition of anthranilate synthase and enhanced expression of tryptophan genes ofBrevibacterium lactofermentum. J Bacteriol 109: 5330–5332Google Scholar
  52. Misono H, Togawa H, Yamamoto T & Soda K (1979) Meso-diaminopimelate dehydrogenase: Distribution and the reaction product. J Bacteriol 137: 22–27PubMedGoogle Scholar
  53. Miwa K, Matsui H, Terabe M, Nakamori S, Sano K & Momose H (1984) Cryptic plasmids in glutamic acid-producing bacteria. Agric Biol Chem 48: 2901–2903Google Scholar
  54. Miyajima R, Otsuka S & Shiio I (1968) Regulation of aspartate family amino acid biosynthesis inBrevibacterium flavum. Inhibition by amino acids of the enzymes in threonine biosynthesis. J Biochem 63: 139–148PubMedGoogle Scholar
  55. Miyajima R & Shiio I (1970) Regulation of aspartate family amino acid biosynthesis inBrevibacterium flavum. J Biochem (Tokyo) 68: 311–319PubMedGoogle Scholar
  56. Miyajima R & Shiio I (1971) Regulation of aspartate family amino acid biosynthesis inBrevibacterium flavum. Repression of the enzymes in threonine biosynthesis. Agric Biol Chem 35: 424–430Google Scholar
  57. Miyajima R & Shiio I (1972) Regulation of aspartate family amino acid biosynthesis inBrevibacterium flavum. Effects of isoleucine and valine on threonine dehydratase activity and its formation. J Biochem 71: 951–960PubMedGoogle Scholar
  58. Möckel B, Eggeling L & Sahm H (1992) Functional and structural analyses of threonine dehydratase fromCorynebacterium glutamicum. J Bacteriol 174: 8065–8072PubMedGoogle Scholar
  59. Morinaga Y, Tsuchiya M, Miwa K & Sano K (1987) Expression ofEscherichia coli promoters inBrevibacterium lactofermentum using the shuttle vector pEB003. J Biotechnol 5: 305–312Google Scholar
  60. Nakayama K (1985) Lysine. In: Moo-Young M, Blanch HW, Drews G & Wang DIC (Eds) Comprehensive Biotechnology, Vol 3 (pp 607–620). Pergamon Press, OxfordGoogle Scholar
  61. Nakayama K, Tanaka H, Hagino H & Kinoshita S (1966) Studies on lysine formation, part V. Concerted feedback inhibition of aspartokinase and the absence of lysine inhibition on aspartic semialdehyde-pyruvate condensation inMicrococcus glutamicus. Agr Biol Chem 30: 611–616Google Scholar
  62. Nara T, Samejima H, Fujito C, Ito M, Nakayama K & Kinoshita S (1961) L-Homoserine fermentation. Part VI. Effect of threonine and methionine on L-homoscrine dehydrogenase inMicrococcus glutamicus 534-Col47. Agric Biol Chem 35: 532–541Google Scholar
  63. Parsot C & Cohen GN (1988) Cloning and nucleotide sequence of theBacillus subtilis hom gene coding for homoserine dehydrogenase. J Biol Chem 263: 14654–14660PubMedGoogle Scholar
  64. Patte J-C (1983) Diaminopimelate and lysine. In: Herrmann KM & Somerville RL (Eds) Amino acids: Biosynthesis and genetic regulation (pp 213–228). Addison-Wesley Publishing Company, LondonGoogle Scholar
  65. Peoples OP, Liebl W, Bodis M, Maeng PJ, Follettie MT, Archer JA & Sinskey AJ (1988) Nucleotide sequence and fine structural analysis of theCorynebacterium glutamicum hom-thrB operon. Mol Microbiol 2: 63–72PubMedGoogle Scholar
  66. Pisabarro A, Malumbres M, Mateos LM, Oguiza JA & Martin JF (1993) A cluster of three genes (dapA, orf2, anddapB) ofBrevibacterium lactofermentum encodes dihydrodipicolinate synthase, dihydrodipicolinate reductase, and a third polypeptide of unknown function. J Bacteriol 175: 2743–2749PubMedGoogle Scholar
  67. Reinscheid D, Eikmanns B & Sahm H (1991) Analysis of aCorynebacterium glutamicum hom gene coding for feedback-resistant homoserine dehydrogenase. J Bacteriol 173: 3228–3230PubMedGoogle Scholar
  68. Rossol I & Pühler A (1992) TheCorynebacterium glutamicum aecD gene encodes a C-S lyase with α,β-elimination activity that degrades aminoethylcysteine. J Bacteriol 174: 2968–2977PubMedGoogle Scholar
  69. Sano K & Shiio I (1970) Microbial production of L-lysine III. Production by mutants resistant to S-(2-aminoethyl)-L-cysteine. J Gen Appl Microbiol 16: 373–391Google Scholar
  70. Santamaria R, Gil JA, Measa JM & Martin JF (1984) Characterization of an endogenous plasmid and development of cloning vectors and a transformation system inBrevibacterium lactofermentum. J Gen Microbiol 130: 2237–2246Google Scholar
  71. Santamaria R, Gil JA & Martin JF (1985) High-frequency transformation ofBrevibacterium lactofermentum protoplasts by plasmid DNA. J. Bacteriol 162: 463–467PubMedGoogle Scholar
  72. Schäfer A, Kalinowski J, Simon R, Seep-Feldhaus A & Pühler A (1990) Highfrequency conjugal plasmid transfer from GramnegativeEscherichia coli to various Gram-positive coryneform bacteria. J Bacteriol 172: 1663–1666PubMedGoogle Scholar
  73. Schrumpf B, Schwarzer A, Kalinowski J, Pühler A, Eggeling L & Sahm H (1991) A functionally split pathway for lysine synthesis inCorynebacterium glutamicum. J Bacteriol 173: 4510–4516PubMedGoogle Scholar
  74. Schrumpf B, Eggeling L & Sahm H (1992) Isolation and prominent characteristics of an L-lysine hyperproducing strain ofCorynebacterium glutamicum. Appl Microbiol Biotechnol 37: 566–571Google Scholar
  75. Schwarzer A & Pühler A (1991) Genetic manipulation of the amino acidproducingCorynebacterium glutamicum strain ATCC 13032 by gene disruption and gene replacement. Bio/Technology 9: 84–87PubMedGoogle Scholar
  76. Seep-Feldhaus A, Kalinowski J & Pühler A (1991) Molecular analysis of theCorynebacterium glutamicum lysI gene involved in lysine uptake. Mol Microbiol 5: 2995–3005PubMedGoogle Scholar
  77. Sharp PM, & Mitchell KJ (1993)Corynebacterium glutamicum arginyl-tRNA synthetase. Mol Microbiol 8: 200PubMedGoogle Scholar
  78. Shiio I & Miyajima R (1969) Concerted inhibition and its reversal by end products of aspartate kinase inBrevibacterium flavum. J Biol Chem 65: 849–859Google Scholar
  79. Shiio I & Nakamori S (1970) Microbial production of L-threonine, Part 2: Producction by α-amino-β-hydroxyvaleric acid resistant mutants of glutamate producing bacteria. Agric Biol Chem 34: 448–456Google Scholar
  80. Shiio I, Sugimoto S & Toride Y (1984) Studies on mechanisms for lysine production by pyruvate kinase-deficient mutants ofBrevibacterium flavum. Agr Biol Chem Tokyo 48: 1551–1558Google Scholar
  81. Shiio I, Yoshino H & Sugimoto S (1990) Isolation and properties of lysineproducing mutants with feedback-resistant aspartokinase derived from aBrevibacterium flavum strain with citrate synthase- and pyruvate kinasedefects and feedback-resistant phosphoenolpyruvate carboxylase. Agric Biol Chem Tokyo 54: 3275–3282Google Scholar
  82. Simon R, Priefer U & Pühler A (1983) A broad host range mobilization system for in vivo genetic engineering: Transposon mutagenesis in Gram negative bacteria. Bio/Technol 1: 784–791CrossRefGoogle Scholar
  83. Skarstedt MT & Greer SB (1973) Threonine synthetase ofBacillus subtilis. J. Biol Chem 248: 1032–1044PubMedGoogle Scholar
  84. Sonntag K, Eggeling L, De Graaf AA & Sahm H (1993) Flux partitioning in the split pathway of lysine synthesis inCorynebacterium glutamicum. Quantification by 13C- and 1H-NMR spectroscopy. Eur J Biochem 213: 1325–1331PubMedGoogle Scholar
  85. Sundharadas G & Gilvarg C (1967) Biosynthesis of diaminopimelic acid inBacillus megaterium. J Biol Chem 242: 3983–3988PubMedGoogle Scholar
  86. Taillon BE, Little R & Lawther RP (1988) Analysis of the functional domains of biosynthetic threonine deaminase by comparison of the amino acid sequences of three wild-type alleles to the amino acid sequence of biodegradative threonine deaminase. Gene 63: 245–252PubMedGoogle Scholar
  87. Theze J, Margarita D, Cohen GN, Borne F & Patte JC (1974) Mapping of the structural genes of the three aspartokinases and of the two homoserine dehydrogenases ofEscherichia coli K-12. J Bacteriol 117: 133–143PubMedGoogle Scholar
  88. Thierbach G, Kalinowski J, Bachmann B & Pühler A (1990) Cloning of a DNA fragment fromCorynebacterium glutamicum conferring aminoethyl cysteine resistance and feed back resistance to aspartokinase. Appl Microbiol Biotechnol 32: 443–448PubMedGoogle Scholar
  89. Tosaka O, Hirakawa H, Takinami K & Hirose Y (1978) Regulation of lysine biosynthesis by leucine inBrevibacterium lactofermentum. Agr Biol Chem 42: 1501–1506Google Scholar
  90. Tosaka O & Takinami K (1978) Pathway and regulation of lysine biosynthesis inBrevibacterium lactofermentum. Agric Biol Chem Tokyo 42: 95–100Google Scholar
  91. Tosaka O, Takinami K & Hirose Y (1978) L-Lysine production by S-(2-aminoethyl)L-cysteine and α-amino-β-hydroxyvaleric acid resistant mutants ofBrevibacterium lactofermentum. Agric Biol Chem Tokyo 42: 745–752Google Scholar
  92. Tosaka O, Ishihara M, Morinaga Y & Takinami K (1979) Mode of conversion of asparto-β-semialdehyde to L-threonine and L-lysine inBrevibacterium lactofermentum. Agric Biol Chem 43: 265–270Google Scholar
  93. Umbarger HE (1987) Biosynthesis of the branched-chain amino acids. In: Ingraham JL, Low KB, Magasanik B, Schaechter M & Umbarger HE (Eds)Escherichia coli andSalmonella typhimurium (pp 352–367). American Society for Microbiology, Washington, D.C.Google Scholar
  94. Vallino JJ & Stephanopoulos G (1993) Metabolic flux distributions inCorynebacterium glutamicum during growth and lysine overproduction. Biotech Bioeng 41: 633–646Google Scholar
  95. Weinberger S, & Gilvarg C (1970) Bacterial distribution of the use of succinyl and acetyl blocking groups in diaminopimelic acid biosynthesis. J Bacteriol 101: 323–324PubMedGoogle Scholar
  96. Weinstock O, Sella C, Chipman DM & Barak Z (1992) Properties of subcloned subunits of bacterial acetohydoxy acid synthases. J Bacteriol 174: 5560–5566PubMedGoogle Scholar
  97. White PJ (1983) The essential role of diaminopimelate dehydrogenase in the biosynthesis of lysine byBacillus sphaericus. J Gen Microbiol 129: 739–749Google Scholar
  98. Wilhelm C, Eggeling I, Nassenstein A, Jebsen C, Eggeling L & Sahm H (1989) Limitations during hydroxybutyrate conversion to isoleucine withCorynebacterium glutamicum, as analysed the formation of by-products. Appl Microbiol Biot 31: 458–462Google Scholar
  99. Willins DA, Ryan CW, Platko JV & Calvo JM (1991) Characterization of Lrp, anEscherichia coli regulatory protein that mediates a global response to leucine. J Biol Chem 266: 10768–10774PubMedGoogle Scholar
  100. Yamaguchi K, Ishino S, Araki K & Shirahata K (1986) 13-NMR studies of lysine fermentation with aCorynebacterium glutamicum mutant. Agric Biol Chem 50: 2453–2459Google Scholar
  101. Yeh P, Sicard AM & Sinskey AJ (1988a) General organization of the genes specifically involved in the diaminopimelate-lysine biosynthetic pathway ofCorynebacterium glutamicum. Mol Gen Genet 212: 105–111PubMedGoogle Scholar
  102. Yeh P, Sicard AM & Sinskey AJ (1988b) Nucleotide sequence of thelvsA gene ofCorynebacterium glutamicum and possible mechanisms for modulation of its expression. Mol Gen Genet 212: 112–119PubMedGoogle Scholar
  103. Yoshihama M, Higashiro K, Rao EA, Akedo M, Shanabruch WG, Follettie MT, Walker GC & Sinskey AJ (1985) Cloning vector system forCorynebacterium glutamicum. J Bacteriol 162: 591–597PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • Bernhard J. Eikmanns
    • 1
  • Lothar Eggeling
    • 1
  • Hermann Sahm
    • 1
  1. 1.Forschungszentrum Jülich GmbHInstitut für BiotechnologieJülichGermany

Personalised recommendations