Skip to main content
Log in

Genetics of lactobacilli: Plasmids and gene expression

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

This paper reviews the present knowledge of the structure and properties of small (<5 kb) plasmids present inLactobacillus spp. The data show that plasmids fromLactobacillus spp., like many plasmids from other Gram-positive bacteria, display a modular organization and replicate by a mechanism of rolling circle replication. Structurally, plasmids from lactobacilli are closely related to plasmids from other Gram-positive bacteria. They contain elements (plus- and minus origin of replication, element(s) for control of plasmid replication, mobilization function) showing extensive similarity to analogous elements in plasmids from these other organisms. It is believed that lactobacilli have acquired such elements by intra- and/or intergenic transfer mechanisms. The first part of the review is concluded with a description of plasmid vectors with aLactobacillus replicon and integrative vectors, including data concerning their structural and segregational stability.

In the second part of this review we describe the progress that has been made during the last few years in identifying and characterizing elements that control expression of genetic information in lactobacilli. Based on the sequence of eleven identified and twenty presumed promoters, some preliminary conclusions can be drawn regarding the structure ofLactobacillus promoters. A typicalLactobacillus promoter shows significant similarity to promoters fromE. coli andB. subtilis. An analysis of published sequences of seventy genes indicates that the region encompassing the translation start codon AUG also shows extensive similarity to that ofE. coli andB. subtilis. Codon usage ofLactobacillus genes is not random and shows interspecies as well as intraspecies heterogeneity. Interspecies differences may, in part, be explained by differences in G + C content of different lactobacilli. Differences in gene expression levels can, to a large extent, account for intraspecies differences of codon usage bias. Finally, we review the knowledge that has become available concerning protein secretion and heterologous gene expression in lactobacilli. This part is concluded with a compilation of data on the expression inLactobacillus of heterologous genes under the control of their own promoter or under control of aLactobacillus promoter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmad KA & Stewart GSAB (1988) Cloning of thelux genes intoLactobacillus casei andStreptococcus lactis: phosphate-dependent light production. Biochem. Soc. Trans. 1068

  • Ahn C & Stiles ME (1990) Antibacterial activity of lactic acid bacteria isolated from vacuum-packaged meats. J. Appl. Bacteriol. 69: 302–310

    PubMed  Google Scholar 

  • Ahrné S, Molin G & Axelsson L (1992) Transformation ofLactobacillus reuteri with electroporation studies on the erythromycin resistance plasmid pLUL631. Curr. Microbiol. 24: 199–205

    Google Scholar 

  • Ahrné S, Molin G & Stahl S (1989) Plasmids inLactobacillus isolated from meat and meat products. Syst. Appl. Microbiol. 11: 320–325

    Google Scholar 

  • Alonso JC & Tailor RH (1987) Initiation of plasmid pC194 replication and its control in Bacillus subtilis. Mol. Gen. Genet. 210: 476–484

    PubMed  Google Scholar 

  • Aukrust T & Nes IF (1988) Transformation ofLactobacillus plantarum with the plasmid pTV1 by electroporation. FEMS Microbiol. Lett. 52: 127–132

    Google Scholar 

  • Axelsson LT, Ahrné SEI, Andersson MC & Stahl SR (1988) Identification and cloning of a plasmid-encoded erythromycin resistance determinant fromLactobacillus reuteri. Plasmid 20: 171–174

    PubMed  Google Scholar 

  • Baik BH & Pack MY (1990) Expression of aBacillus subtilis endoglucanase gene inLactobacillus acidophilus. Biotechnol. Lett. 12: 919–924

    Google Scholar 

  • Bates EEM & Gilbert HJ (1989) Characterization of a cryptic plasmid fromLactobacillus plantarum. Gene 85: 253–258

    PubMed  Google Scholar 

  • Bates EEM, Gilbert HJ, Hazlewood GP, Huckle J, Laurie JI & Mann SP (1989) Expression of aClostridium thermocellum endoglucanase gene inLactobacillus plantarum. Appl. Environ. Microbiol. 55: 2095–2097

    PubMed  Google Scholar 

  • Belasco JG & Higgins CF (1988) Mechanisms of mRNA decay in bacteria: a perspective. Gene 72: 15–23

    PubMed  Google Scholar 

  • Boe L, Gros MF, Riele H te, Ehrlich SD & Gruss A (1989) Replication origins of single-stranded DNA plasmid pUB110. J. Bacteriol. 171: 3366–3372

    PubMed  Google Scholar 

  • Boot H, Kolen KPAM, Noort JM van & Pouwels PH (1993) S-layer protein ofLactobacillus acidophilus ATCC 4356: Purification, expression inEscherichia coli, and nucleotide sequence of the corresponding gene. J. Bacteriol. 175: 6089–6096

    PubMed  Google Scholar 

  • Bor YC, Moraes C, Lee SP, Crosby WL, Sinskey AJ & Batt CA (1992) Cloning and sequencing theLactobacillus brevis gene encoding xylose isomerase. Gene 114: 127–132

    PubMed  Google Scholar 

  • Bouia A, Bringel F, Frey L, Kammerer B, Belarbi A, Goyonvarch A & Hubert JC (1989) Structural organization of pLP-1, a cryptic plasmid fromLactobacillus plantarum CCM 1904. Plasmid 22: 185–192

    PubMed  Google Scholar 

  • Bringel F, Frey L & Hubert JC (1989) Characterization, cloning, curing, and distribution in lactic acid bacteria of pLP1, a plasmid fromLactobacillus plantarum CCM 1904 and its use in shuttle vector construction. Plasmid 22: 193–202

    PubMed  Google Scholar 

  • Bron S (1990) Plasmids. In: Harwood CR & Cutting SM (Eds) Molecular Biology Methods for Bacillus (pp 75–174) John Wiley & Sons, Chichester UK

    Google Scholar 

  • Bron S & Luxen E (1985) Segregational instability of pUB110-derived recombinant plasmids inBacillus subtilis. Plasmid 14: 235–244

    PubMed  Google Scholar 

  • Bron S, Haima P, Belkum M van & Luxen E (1988a) Segregational plasmid instability inBacillus subtilis. In: Ganesan AT & Hoch JA (Eds) Genetics and Biotechnology of Bacilli, Vol. 2 (pp 305–309) Academic Press, Inc., San Diego

    Google Scholar 

  • Bron S, Luxen E & Swart P (1988b) Instability of recombinant pUB110 plasmids inBacillus subtilis, plasmid-encoded stability function and effects of DNA inserts. Plasmid 19: 231–241

    PubMed  Google Scholar 

  • Bhowmik T & Steele JL (1993) Development of an electroporation procedure for gene disruption inLactobacillus helveticus CNRZ 32. J. Gen. Microbiol. (In press)

  • Brückner R (1992) A series of shuttle vectors forBacillus subtilis andEscherichia coli. Gene 122: 187–192

    PubMed  Google Scholar 

  • Chagnaud P, Chion CKNCK, Duran R, Naouri P, Arnaud A & Galzy P (1992) Construction of a new shuttle vector forLactobacillus. Can. J. Microbiol. 38: 69–74

    PubMed  Google Scholar 

  • Chassy BM (1985) Prospects for improving economically significantLactobacillus strains by ‘genetic technology’. Trends in Biotechnology 3: 273–275

    Google Scholar 

  • —— (1987) Prospects for the genetic manipulation of lactobacilli. FEMS Microbiol. Rev. 46: 297–312

    Google Scholar 

  • Chassy BM, Gibson E & Giuffrida A (1976) Evidence for extrachromosomal elements inLactobacillus. J. Bacteriol. 127: 1576–1578

    PubMed  Google Scholar 

  • ——, (1978) Evidence for plasmid-associated lactose metabolism inLactobacillus casei. Current Microbiol. 1: 141–144

    Google Scholar 

  • Chassy BM & Flickinger JL (1987) Transformation ofLactobacillus casei by electroporation. FEMS Microbiol. Lett. 44: 173–177

    Google Scholar 

  • Chassy BM, Flickinger JL & Thompson J (1993) The β-galactosidase ofLactobacillus casei is a heterodimer encoded by overlapping genes. J. Bacteriol. Submitted

  • Chassy BM & Rokaw E (1981) Conjugal transfer of lactose plasmids inLactobacillus casei. In: Levy S, Clowes R & Koenig E (Eds) Molecular Biology, Pathogenesis and Ecology of Bacterial Plasmids (pp 590) Plenum Press, New York

    Google Scholar 

  • Chassy BM & Murphy C (1993) The Lactococci and the Lactobacilli. In: Gram Positive Bacteria. American Society for Microbiology (In press)

  • Chopin MC, Chopin A, Rouault A & Galleron N (1989) Insertion and amplification of foreign genes in theLactococcus lactis subs.lactis chromosome. Appl. Environm. Microbiol. 55: 1769–1774

    Google Scholar 

  • Christiaens H, Leer RJ, Pouwels PH & Verstraete W (1992) Cloning and expression of a conjugated bile acid hydrolase gene fromLactobacillus plantarum using a direct plate assay. Appl. Environ. Microbiol. 58: 3792–3798

    PubMed  Google Scholar 

  • Cocconcelli PS, Gasson MJ, Morelli L & Bottazzi V (1991) Single-stranded DNA plasmid, vector construction and cloning ofBacillus stearothermophilus α-amylase inLactobacillus. Res. Microbiol. 142: 643–652

    PubMed  Google Scholar 

  • Collins MD, Phillips BA & Zanoni P (1989) Deoxyribonucleic acid homology studies ofLactobacillus casei, Lactobacillus paracasei sp. nov., subsp.paracasei and subsp.tolerans, andLactobacillus rhamnosus sp. nov., comb. nov. Int. J. Syst. Bacteriol. 39: 105–107

    Google Scholar 

  • Copeland WC, Domena JD & Robertus JD (1989) The molecular cloning, sequence and expression of thehdc B gene fromLactobacillus 30A. Gene 85: 259–266

    PubMed  Google Scholar 

  • Daeschel MA, Andersson RE & Fleming HP (1987) Microbial ecology of fermenting plant materials. FEMS Microbiol. Rev. 46: 357–367

    Google Scholar 

  • Damiani G, Romagnoli S, Ferretti L, Morelli L, Bottazzi V & Sgaramella V (1987) Sequence and functional analysis of a divergent promoter from a cryptic plasmid ofLactobacillus acidophilus 168S. Plasmid 17: 69–72

    PubMed  Google Scholar 

  • Debarbouille M, Martin-Verstraete I, Arnaud M, Klier A & Rapport G (1991) Positive and negative regulation controlling expression of thesac genes inBacillus subtilis. Res. Microbiol. 142: 757–764

    PubMed  Google Scholar 

  • Del Solar GH, Puyet A & Esponosa M (1987) Initiation signals for the conversion of single stranded to double stranded DNA forms in the streptococcal plasmid pLS1. Nucleic Acids Res. 15: 5561–5580

    PubMed  Google Scholar 

  • Del Solar GH & Espinosa M (1992) The copy number of plasmid pLS1 is regulated by two trans-acting plasmid products-the antisense RNA II and repressor protein, RepA. Mol. Microbiol. 6: 83–94

    Google Scholar 

  • Deng Z, Keiser T & Hopwood D (1988) ‘Strong incompatibility’ between derivatives of theStreptomyces multicopy plasmid pIJ101. Mol. Gen. Genet. 214: 286–294

    PubMed  Google Scholar 

  • Devine KM, Hogan ST, Higgins DG & McConnell DJ (1989) Replication and segregational stability of theBacillus plasmid pBAA1. J. Bacteriol. 171: 1166–1172

    PubMed  Google Scholar 

  • Fernandes CF, Shahani KM & Amer MA (1987) Therapeutic role of dietary lactobacilli and lactobacillic fermented dairy products. FEMS Microbiol. Rev. 46: 343–356

    Google Scholar 

  • Gaier W, Vogel RF & Hammes WP (1992) Cloning and expression of the lysostaphin gene inBacillus subtilis andLactobacillus casei. Lett. Appl. Microbiol. 14: 72–76

    PubMed  Google Scholar 

  • Gasson MJ & Anderson PH (1985) High copy number plasmid vectors for use in lactic streptococci. FEMS Microbiol. Lett. 30: 193–196

    Google Scholar 

  • Gasson MJ (1990)In vivo genetic systems in lactic acid bacteria. FEMS Microbiol. Rev. 87(1–2): 43–60

    Google Scholar 

  • Gennaro ML, Kornblum J & Novick RP (1987) A site-specific recombination function inStaphylococcus aureus plasmids. J. Bacteriol. 169: 2601–2610

    PubMed  Google Scholar 

  • Gerritse K, Posno M, Schellekens MM, Boersma WJA & Claassen E (1991a) Oral administration of TNP-Lactobacillus conjugates in mice: A model for evaluation of mucosal and systemic immune responses and memory formation elicited by transformed lactobacilli. Res. Microbiol. 141: 955–962

    Google Scholar 

  • Gerritse K, Posno M, Fasbender MJ, Schellekens MM, Boersma WJA & Claassen E (1991b) Mucosal immune responses and systemic immunological memory after oral administration of TNP-Lactobacillus conjugates in mice. Lymphatic tissues andin vivo immune responses. Adv. Exp. Med. & Biol. 84: 497–504

    Google Scholar 

  • Gilliland SE (1990) Health and nutritional benefits from lactic acid bacteria. FEMS Microbiol. Rev. 87: 175–188

    Google Scholar 

  • Graves MC & Rabinowitz JC (1986)In vivo andin vitro transcription of theClostridium pasteurianum ferredoxin gene. J. Biol. Chem. 261: 11409–11415

    PubMed  Google Scholar 

  • Gruss AD, Ross HF & Novick RP (1987) Functional analysis of a palindromic sequence required for normal replication of several staphylococcal plasmids. Proc. Natl. Acad. Sci. USA 84: 2165–2169

    PubMed  Google Scholar 

  • Gruss A & Ehrlich D (1989) The family of highly interrelated single-stranded deoxyribonucleic acid plasmids. Microbiol. Rev. 53: 231–241

    PubMed  Google Scholar 

  • Gryczan TJ, Hahn J, Contente S & Dubnau D (1982) Replication and incompatibility properties of plasmid pE194 inBacillus subtilis. J. Bacteriol. 152: 722–735

    PubMed  Google Scholar 

  • Gu ZM, Martindale DW & Lee BH (1992) Isolation and complete sequence of thepur L gene encoding FGAM synthase II inLactobacillus casei. Gene 119: 123–126

    PubMed  Google Scholar 

  • Gurr MI (1987) Nutritional aspects of fermented milk products. FEMS Microbiol. Rev. 46: 337–342

    Google Scholar 

  • Hashiba H, Takiguchi R, Jyoho K & Aoyama K (1992) Establishment of a host-vector system inLactobacillus helveticus with β-galactosidase activity as a selection marker. Biosci. Biotechnol. Biochem. 56: 190–194

    PubMed  Google Scholar 

  • Heaton MP & Neuhaus FC (1992) Biosynthesis of D-alanyl lipoteichoic acid: cloning, nucleotide sequence and expression of theLactobacillus casei gene for the D-alanine activating enzyme. J. Bacteriol. 174: 4707–4717

    PubMed  Google Scholar 

  • Higgins CF, Ames GFL, Barmes WM, Clement JM & Hofnung M (1982) A novel intercistronic regulatory element of prokaryotic operons. Nature 298: 760–762

    PubMed  Google Scholar 

  • Hill HA & Hill JE (1986) The value of plasmid profiling in monitoringLactobacillus plantarum in silage fermentations. Curr. Microbiol. 13: 91–94

    Google Scholar 

  • Hofer F (1977) Involvement of plasmids in lactose metabolism inLactobacillus casei suggested by genetic experiments. FEMS Microbiol. Lett. 1: 167–170

    Google Scholar 

  • Holck A & Naes H (1992) Cloning, sequencing, and expression of the gene encoding the cell-envelope-associated proteinase fromLactobacillus paracasei subsp.paracasei NCDO 151. J. Gen. Microbiol. 138: 1353–1364

    PubMed  Google Scholar 

  • Horinouchi S & Weisblum B (1982a) Nucleotide sequence and functional map of pE194, a plasmid that specifies inducible resistance to macrolide, lincosamide, and streptogramin type B antibiotics. J. Bacteriol. 150: 804–814

    PubMed  Google Scholar 

  • —— (1982b) Nucleotide sequence and functional map of pC194, a plasmid that specifies chloramphenicol resistance. J. Bacteriol. 150: 815–825

    PubMed  Google Scholar 

  • Höttinger H, Ohgi T, Zwahlen M-C, Dhamija S & Soell D (1987) Allele-specific complementation of anEscherichia coli leuB mutation by aLactobacillus bulgaricus tRNA gene. Gene 60: 75–83

    PubMed  Google Scholar 

  • Hybsy KO von & Nes IF (1986) Changes in the plasmid profile ofLactobacillus plantarum obtained from commercial meat starter cultures. J. Appl. Bacteriol. 60: 413–417

    Google Scholar 

  • Ilyina TV & Koonin EV (1992) Conserved sequence motifs in the initiator proteins for rolling circle DNA replication encoded by diverse replicons from eubacteria, eucaryotes and archaebacteria. Nucl. Acids. Res. 20: 3279–3285

    PubMed  Google Scholar 

  • Iordanescu S & Projan SJ (1988) Replication termination for staphylococcal plasmids: plasmids pT181 and pC221 crossreact in the termination process. J. Bacteriol. 170: 3427–3434

    PubMed  Google Scholar 

  • Ishiwa H & Iwata S (1980) Drug resistance plasmids inLactobacillus fermentum. J. Gen. Appl. Microbiol. 26: 1–74

    Google Scholar 

  • Iwata M (1988) Characterization of a pAMβ1 deletion derivative isolated fromLactobacillus casei after conjugation. Biochimie 30: 553–558

    Google Scholar 

  • Jewell B & Collins-Thompson DL (1989) Characterization of chloramphenicol resistance inLactobacillus plantarum catC2. Curr. Microbiol. 19: 343–346

    Google Scholar 

  • Joerger MC & Klaenhammer TR (1990) Cloning, expression and nucleotide sequence of theLactobacillus helveticus 481 gene encoding the bacteriocin helveticin. J. Bacteriol. 172: 6339–6347

    PubMed  Google Scholar 

  • Jones S & Warner PJ (1990) Cloning and expression of alpha-amylase fromBacillus amyloliquefaciens in a stable plasmid vector inLactobacillus plantarum. Lett. Appl. Microbiol. 11: 214–219

    PubMed  Google Scholar 

  • Josson K, Scheirlinck T, Michiels F, Platteeuw C, Stanssens P, Joos H, Dhaese P, Zabeau M & Mahillon J (1989) Characterization of a Gram-positive broad-host-range plasmid isolated fromLactobacillus hilgardii. Plasmid 21: 9–20

    PubMed  Google Scholar 

  • Josson K, Soetaert P, Michiels F, Joos H & Mahillon J (1990)Lactobacillus hilgardii plasmid pLAB1000 consists of two functional cassettes commonly found in other Gram-positive organisms. J. Bacteriol. 172: 3089–3099

    PubMed  Google Scholar 

  • Kanatani K, Tahara T, Yoshida K, Miura H, Sakamoto M & Oshimura M (1992) Plasmid-linked galactose utilization byLactobacillus acidophilus TK8912. Biosci. Biotech. Biochem. 56: 826–827

    Google Scholar 

  • Kandler O (1984) Current taxonomy of lactobacilli. Dev. Indust. Microbiol. 25: 109–123

    Google Scholar 

  • Khan S & Novick R (1982) Structural analysis of plasmid pSN2 inStaphylococcus aureus: no involvement in enterotoxin B production. J. Bacteriol. 149: 642–649

    PubMed  Google Scholar 

  • —— (1983) Complete nucleotide sequence of pT181, a tetracycline-resistance plasmid fromStaphylococcus aureus. Plasmid 10: 251–259

    PubMed  Google Scholar 

  • Kilara A & Treki N (1984) Uses of lactobacilli in foods. Unique benefits. Dev. Indust. Microbiol. 25: 125–138

    Google Scholar 

  • Kim SF, Baek SJ & Pack MY (1991) Cloning and nucleotide sequence of theLactobacillus casei lactate dehydrogenase gene. Appl. Environ. Microbiol. 57: 2413–2417

    PubMed  Google Scholar 

  • Klaenhammer TR (1984) A general method for plasmid isolation in lactobacilli. Curr. Microbiol. 10: 23–28

    Google Scholar 

  • —— (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 12: 39–85

    PubMed  Google Scholar 

  • Klaenhammer TR & Sutherland SM (1980) Detection of plasmid deoxyribonucleic acid in an isolate ofLactobacillus acidophilus. Appl. Environ. Microbiol. 35: 592–600

    Google Scholar 

  • Knauf HJ, Vogel RF & Hammes WP (1992) Cloning, sequence, and phenotypic expression ofkatA which encodes the catalase ofLactobacillus sake LTH677. Appl. Environ. Microbiol. 58: 832–839

    PubMed  Google Scholar 

  • Koepsel R & Khan S (1987) Cleavage of single-stranded DNA by plasmid pT181-encoded RepC protein. Nucleic Acids Res. 15: 4085–4097

    PubMed  Google Scholar 

  • Kok J (1990) Genetics of the proteolytic system of the lactic acid bacteria. FEMS Microbiol. Rev. 87: 15–42

    Google Scholar 

  • Kok J, Vossen JMBM van der & Venema G (1984) Construction of plasmid cloning vectors for lactic streptococci which also replicate inBacillus subtilis andEscherichia coli. Appl. Environ. Microbiol. 48: 726–731

    PubMed  Google Scholar 

  • Lacks SA, Lopez P, Greenberg B & Espinosa M (1986) Identification and analysis of genes for tetracycline resistance and replication functions in the boad-host-range plasmid pLS1. J. Mol. Biol. 192: 753–765

    PubMed  Google Scholar 

  • Le Bourgeois P, Lautier M & Ritzenthaler P (1993) Chromosome mapping in lactic acid bacteria. FEMS Micro. Rev. 12: 109–124

    Google Scholar 

  • Leenhouts KJ, Gietema J, Kok J & Venema G (1991) Chromosomal stabilization of the proteinase genes inLactococcus lactis. Appl. Environ. Microbiol. 56: 2568–2575

    Google Scholar 

  • Leer R, Christiaens H, Verstraete W, Peters L, Posno M & Pouwels PH (1993) Gene-disruption inLactobacillus plantarum strain 80 by site-specific recombination: isolation of a mutant strain deficient in conjugated bile salt hydrolase activity. Mol. Gen. Genet. 239: 269–272

    PubMed  Google Scholar 

  • Leer RJ, Luijk N van, Posno M & Pouwels PH (1992) Structural and functional analysis of two cryptic plasmids fromLactobacillus pentosus MD353 andLactobacillus plantarum ATCC 8014. Mol. Gen. Genet. 234: 265–274

    PubMed  Google Scholar 

  • Leer RJ, Posno M, Rijn JMM van, Lokman BC & Pouwels PH (1987) Transformation ofLactobacillus plantarum by plasmid DNA. FEMS Microbiol. Rev. 46: P20

  • Leong-Morgenthaler P, Zwahlen MC & Höttinger H (1991) Lactose metabolism inLactobacillus bulgaricus: Analysis of the primary structure and expression of the genes involved. J. Bacteriol. 173: 1951–1957

    PubMed  Google Scholar 

  • Lerch H-P, Frank R & Collins J (1989a) Cloning, sequencing and expression of the L-2-hydroxyisocaproate dehydrogenase-encoding gene ofLactobacillus confusus inEscherichia coli. Gene 83: 263–270

    PubMed  Google Scholar 

  • Lerch HP, Blocker H, Kallwas H, Hoppe J, Tsai H & Collins J (1989b) Cloning, sequencing and expression inEschericia coli of the D-2-hydroxyisocaproate dehydrogenase gene ofLactobacillus casei. Gene 78: 47–57

    PubMed  Google Scholar 

  • Lin JHC & Savage DC (1985) Cryptic plasmids inLactobacillus strains isolated from the murine gastrointestinal tract. Appl. Environ. Microbiol. 49: 1004–1006

    PubMed  Google Scholar 

  • Liu ML, Kondo JK, Barnes MB & Bartholomeu DT (1988) Plasmid-linked maltose utilization inLactobacillus ssp.. Biochimie 70: 351–355

    PubMed  Google Scholar 

  • Lokman BC, Santen P van, Verdoes JC, Kruse J, Leer RJ, Posno M & Pouwels PH (1991) Organization and characterization of three genes involved in D-xylose catabolism inLactobacillus pentosus. Mol. Gen. Genet. 230: 161–169

    PubMed  Google Scholar 

  • Lönner C, Preve-Akeson K & Ahrné O (1990) Plasmid contents of lactic acid bacteria isolated from different types of sour doughs. Curr. Microbiol. 20: 201–207

    Google Scholar 

  • Luchansky JB, Muriana PM & Klaenhammer TR (1988) Application of electroporation for transfer of plasmid DNA toLactobacillus, Lactococcus, Leuconostoc, Listeria, Pediococcus, Bacillus, Staphylococcus, Enterococcus andPropionibacterium. Mol. Microbiol. 2: 637–646

    PubMed  Google Scholar 

  • Maciag IE, Virel J-F & Alonso JC (1988) Replication and incompatibility properties of plasmid pUB110 inBacillus subtilis. Mol. Gen. Genet. 212: 232–240

    PubMed  Google Scholar 

  • Maguin E, Duwat P, Hege T, Ehrlich D & Gruss A (1992) New thermosensitive plasmid for gram-positive bacteria. J. Bacteriol. 174: 5633–5638

    PubMed  Google Scholar 

  • Mayo B, Hardisson C & Brana AF (1989) Selected characteristic of several strains ofLactobacillus plantarum. Microbiologia 5: 105–122

    PubMed  Google Scholar 

  • McCormick JR, Zengel JM & Lendahl L (1991) Intermediates in the degradation of mRNA from the lactose operon ofEscherichia coli. Nucleic Acids Res. 19: 2767–2776

    PubMed  Google Scholar 

  • McKay LL & Baldwin KA (1984) Conjugative 40-megadalton plasmid inStreptococcus lactis subsp.diacetylactis DRC3 is associated with resistance to nisin and bacteriophage. Appl. Environ. Microbiol. 47: 68–74

    PubMed  Google Scholar 

  • McKenzie T, Hoshino T, Tanaka T & Sueoka N (1986) The nucleotide sequence of pUB110: some salient features in relation to replication and its regulation. Plasmid 15: 93–103

    PubMed  Google Scholar 

  • McKenzie T, Hoshino T, Tanaka T & Sueoka N (1987) A revision of the nucleotide sequence and functional map of pUB110. Plasmid 17: 83–85

    PubMed  Google Scholar 

  • Mercenier A, Pouwels PH & Chassy BM (1993) Genetic engineering of lactobacilli, leuconostoes, andStreptococcus thermophilus. In: Vos W de & Gasson M (Eds) Applied Genetics of Lactic Acid Bacteria. Blackie & Son, Ltd, Glasgow (in press)

    Google Scholar 

  • Metchnikoff E (1908) The prolongation of life. G.P. Putnam's & Sons, New York

    Google Scholar 

  • Moran CP Jr, Lang N, LeGrice SFJ, Lee G, Stephens M, Soneshein AL, Pero J & Losick R (1982) Nucleotide sequences that signal the initiation of transcription and translation inBacillus subtilis. Mol. Gen. Genet. 186: 339–346

    PubMed  Google Scholar 

  • Morelli L, Vescovo M & Bottazzi V (1983a) Plasmids and antibiotic resistance inLactobacillus helveticus andLactobacillus bulgaricus isolated from natural whey culture. Microbiologia 6: 145–154

    Google Scholar 

  • —— (1983b) Identification of chloramphenicol resistance plasmids inLactobacillus reuteri andLactobacillus acidophilus. Int. J. Microbiol. 1: 1–5

    Google Scholar 

  • Muriana P & Klaenhammer TR (1987) Conjugal transfer of plasmid-encoded determinants for bacteriocin production and immunity inLactobacillus acidophilus 88. Appl. Environ. Microbiol. 53: 553–560

    Google Scholar 

  • —— (1991) Cloning, phenotypic expression, and DNA sequence of the gene for Lactocin F, an antimicrobial peptide produced byLactobacillus spp.. J. Bacteriol. 173: 1779–1788

    PubMed  Google Scholar 

  • Nakamura LK (1981)Lactobacillus amylovorus. Int. J. Syst. Bacteriol. 31: 56–63

    Google Scholar 

  • Nakamura LK & Crowell CD (1979)Lactobacillus amylophilus. Dev. Indust. Microbiol. 20: 531–540

    Google Scholar 

  • Natori Y, Kano Y & Imamoto F (1990) Nucleotide sequences and genomic constitution of five tryptophan genes ofLactobacillus casei. J. Biochem. (Tokyo) 107: 248–255

    PubMed  Google Scholar 

  • Nes IF (1984) Plasmid profiles of ten strains ofLactobacillus plantarum. FEMS Microbiol. Lett. 21: 359–361

    Google Scholar 

  • Novick RP (1987) Plasmid incompatibility. Microbiol. Rev. 51: 381–395

    PubMed  Google Scholar 

  • Novick RP, Iordanescu S, Projan SJ, Kornblum J & Edelman I (1989) pT181 plasmid replication is regulated by a countertranscript-driven transcriptional attenuator. Cell 59: 395–404

    PubMed  Google Scholar 

  • Oppenheim DS & Yanofsky C (1980) Translational coupling during expression of the tryptophan operon ofEscherichia coli. Genetics 95: 785–795

    PubMed  Google Scholar 

  • Osawa S, Muto A, Ohama T, Andachi Y, Tanaka R & Yamao F (1990) Prokaryotic genetic code. Experientia 46: 1097–1106

    PubMed  Google Scholar 

  • O'Sullivan DJ & Klaenhammer TR (1993) High and low copy numberLactococcus shuttle cloning vectors with feature for clone selection. Submitted

  • Oskouian B & Stewart GC (1990) Expression and catabolic repression of the lactose operon ofStaphyloccus aureus. J. Bacteriol. 172: 3804–3812

    PubMed  Google Scholar 

  • Perdigon G, Macias MEN de, Alvarez S, Oliver G, Ruiz Holgado AP de (1988) Systemic augmentation of the immune response in mice by feeding fermented milks withLactobacillus casei andLactobacillus acidophilus. Immunology 63: 17–23

    PubMed  Google Scholar 

  • Pinter K, Davisson VJ & Santi DV (1988) Cloning, sequencing, and expression of theLactobacillus casei thymidylate synthase gene. DNA 7: 235–241

    PubMed  Google Scholar 

  • Porter EV & Chassy BM (1988) Nucleotide sequence of the β-D-phospho-galactoside galactohydrolase gene ofLactobacillus casei: comparison to analogouspbg genes of other Gram-positive organisms. Gene 62: 263–276

    PubMed  Google Scholar 

  • Posno M, Leer RJ, Luijk K van, Giezen MJF van, Heuvelmans PTHM & Pouwels PH (1991a) Incompatibility ofLactobacillus vectors with replicons derived from small crypticLactobacillus plasmids and segregational instability of the introduced vectors. Appl. Environ. Microbiol. 57: 1822–1828

    Google Scholar 

  • Posno M, Heuvelmans PTHM, Giezen MJF van, Lokman BC, Leer RJ & Pouwels PH (1991b) Complementation of the inability ofLactobacillus strains to utilize D-xylose with D-xylose catabolism-encoding genes ofLactobacillus pentosus. Appl. Environ. Microbiol. 57: 2764–2766

    PubMed  Google Scholar 

  • Pouwels PH, Leer RJ & Posno M (1992) Genetic modification ofLactobacillus: A new approach toward strain improvement. In: Actes du Colloque Lactic 91: 133–148

    Google Scholar 

  • Pouwels PH, van Luijk N, Leer RJ & Posno M (1993) Control of replication of theLactobacillus pentosus plasmid p 353–2: Evidence for a mechanism involving transcription attenuation of the gene coding for the replication protein. Molec. Gen. Genet. in press

  • Projan S & Novick R (1988) Comparative analysis of five related staphylococcal plasmids. Plasmid 19: 203–221

    PubMed  Google Scholar 

  • Prozorov AA, Poluektova EU, Sachenko GV, Nezametdivona VZ & Khasanov FK (1987) Various means of integration of the expressible human dihydrofolate reductase gene into theBacillus subtilis genome. Gene 57: 221–227

    PubMed  Google Scholar 

  • Pugsley AP (1989) Protein targeting. Academic Press, Inc.

  • Raibaud O, Mock M, Schwartz M (1984) A technique for integrating any DNA fragment into the chromosome ofEscherichia coli. Gene 29: 231–241

    PubMed  Google Scholar 

  • Rinckel LA & Savage DC (1990) Characterization of plasmids and plasmid-borne macrolide resistance fromLactobacillus sp. strain 100–33. Plasmid 23: 119–125

    PubMed  Google Scholar 

  • Rooijen RJ van & Vos WM de (1991a) Molecular cloning, transcriptional analysis, and nucleotide sequence oflacR, a gene encoding the repressor of the lactose phosphotransferase system ofLactobacillus lactis. J. Biol. Chem. 265: 18499–18503

    Google Scholar 

  • Rooijen RJ van, Schalkwijk S van & Vos WM de (1991b) Molecular cloning, characterization, and nucleotide sequence of the tagatose-6-phosphate pathway gene cluster of the lactose operon ofLactobacillus lactis. J. Biol. Chem. 266: 7176–7181

    PubMed  Google Scholar 

  • Rose AH (1982) History and scientific basis of microbial activity in fermented foods. In: Rose AH (Ed) Fermented Foods (pp 1–13) Academic Press, New York

    Google Scholar 

  • Ruiz-Barba JL, Piard JC & Simenez-Diaz R (1991) Plasmid profiles and curing of plasmids inLactobacillus plantarum strains isolated from green olive fermentations. J. Appl. Bacteriol. 71: 417–421

    PubMed  Google Scholar 

  • Sanders ME, Leonhard PJ, Sing WD & Klaenhammer TR (1986) Conjugal strategy for construction of fast acid-producing, bacteriophage-resistant lactic streptococci for use in dairy fermentations. Appl. Environ. Microbiol. 52: 1001–1007

    Google Scholar 

  • Scheirlinck T, Mahillon J, Joos H, Dhaese P & Michiels F (1989) Integration and expression of a-amylase and endoglucanase genes in theLactobacillus plantarum chromosome. Appl. Environ. Microbiol. 55: 2130–2137

    PubMed  Google Scholar 

  • Schillinger U & Lücke FK (1989) Antimicrobial activity ofLactobacillus sake isolated from meat. Appl. Environ. Microbiol. 55: 1901–1906

    PubMed  Google Scholar 

  • Sharpe ME (1979) Lactic acid bacteria in the dairy industry. J. Soc. Dairy Technol. 32: 9–18

    Google Scholar 

  • Shay BJ, Egan A, Wright M & Rogers P (1988) Cysteine metabolism in an isolate ofLactobacillus sake: plasmid composition and cysteine transport. FEMS Microbiol. Lett. 56: 183–188

    Google Scholar 

  • Shimizu-Kadota M (1987) Properties of lactose plasmid pLY101 inLactobacillus casei. Appl. Environ. Microbiol. 53: 2987–2991

    Google Scholar 

  • Shimizu-Kadota M, Kiwaki M, Hirokawa H & Tsuchida N (1985) ISL1: a new transposable element inLactobacillus casei. Mol. Gen. Genet. 200: 193–198

    PubMed  Google Scholar 

  • Shimizu-Kadota M, Shibahara-Sone H & Ishiwa H (1991) Shuttle plasmid vectors forLactobacillus casei andEscherichia coli with a minus origin. Appl. Environ. Microbiol. 57: 3292–3300

    PubMed  Google Scholar 

  • Shine J & Dalgarno L (1974) The 3′-terminal sequence ofEscherichia coli 16S RNA: complementarity to non-sense triplets and ribosome binding sites. Proc. Natl. Acad. Sci USA 71: 5463–5467

    Google Scholar 

  • Simon D & Chopin A (1988) Construction of a vector plasmid family and its use for molecular cloning inStreptococcus lactis. Biochimie 70: 559–566

    PubMed  Google Scholar 

  • Skaugen M (1989) The complete nucleotide sequence of a small cryptic plasmid fromLactobacillus plantarum. Plasmid 22: 175–179

    PubMed  Google Scholar 

  • Smiley MB & Fryder V (1978) Plasmids, lactic acid production, and N-acetyl-D-glucosamine fermentation inLactobacillus helveticus subsp.jugurti. Appl. Environ. Microbiol. 35: 777–781

    Google Scholar 

  • Spicher G & Lönner C (1985) Die Mikroflora des Sauerteiges XXI. die in Sauerteigen schwedischer Bäckereien vorkommenden Lactobacillen. Zu Lebensm. unters. Forsch. 181: 9–13

    Google Scholar 

  • Swinfield MJ, Janniere L, Ehrlich SD & Minton NP (1991) Characterization of a region of theEnterococcus faecalis plasmid pAMβ1 which enhances the segregational stability of pAMβ1-derived cloning vectors inBacillus subtilis. Plasmid 26: 209–221

    PubMed  Google Scholar 

  • Taguchi H & Ohta T (1991) D-lactate dehydrogenase is a member of the D-isomer-specific 2-hydroxyacid dehydrogenase family: Cloning, sequencing and expression inEscherichia coli of the L-lactate dehydrogenase gene ofLactobacillus plantarum. J. Biol. Chem. 266: 12588–12594

    PubMed  Google Scholar 

  • Takiguchi R, Hashiba H, Aoyama K & Ishii S (1989) Complete nucleotide sequence and characterization of a cryptic plasmid fromLactobacillus helveticus subsp.jugurti. Appl. Environ. Microbiol. 55: 1653–1655

    PubMed  Google Scholar 

  • Thomas CM (1988) Recent studies on the control of plasmid replication. Biochim. Biophys. Acta 949: 253–263

    PubMed  Google Scholar 

  • Thompson K & Collins M (1991) Molecular cloning inLactobacillus helveticus by plasmid pSA3: pVA797 co-integrate formation and conjugal transfer. Appl. Microbiol. Biotech. 35: 334–338

    Google Scholar 

  • Toy J & Bognar AL (1990) Cloning and expression of the gene encodingLactobacillus casei Folylpoly-gamma-glutamate synthetase inEscherichia coli and determination of its primary structure. J. Biol. Chem. 265: 2492–2499

    PubMed  Google Scholar 

  • Vanderslice P, Copeland W & Robertus J (1986) Cloning and nucleotide sequence of wild type and a mutant histidine decarboxylase fromLactobacillus 30a. J. Biol. Chem. 261: 15186–15191

    PubMed  Google Scholar 

  • Vescovo M, Morelli L & Bottazzi V (1981) Evidence of plasmid DNA inLactobacillus. Microbiologia 4: 413–419

    Google Scholar 

  • —— (1982) Drug resistance plasmids inLactobacillus acidophilus andLactobacillus reuteri. Appl. Environ. Microbiol. 43: 50–56

    PubMed  Google Scholar 

  • Vidgrén G, Palva I, Pakkanen R, Lounatmaa K & Palva A (1992) S-layer ofLactobacillus brevis: PCR cloning and determination of the nucleotide sequence. J. Bacteriol. 174: 7419–7427

    PubMed  Google Scholar 

  • Vogel RF, Gaier W & Hammes WP (1990) Expression of the lipase gene fromStaphylococcus hyicus inLactobacillus curvatus Lc2-c. FEMS Microbiol. Lett. 69: 289–292

    Google Scholar 

  • Vogel RF, Lohmann M, Weller AN, Hugas M & Hammes WP (1991) Structural similarity and distribution of small cryptic plasmids ofLactobacillus curvatus andL. sake. FEMS Microbiol. Lett. 84: 183–190

    Google Scholar 

  • Vos WM de (1987) Gene cloning and expression in lactic streptococci. FEMS Microbiol. Rev. 46: 281–295

    Google Scholar 

  • Vos WM de, Underwood HM & Davies FL (1984) Plasmid encoded bacteriophage resistance inStreptococcus cremoris SK11. FEMS Microbiol. Lett. 23: 175–178

    Google Scholar 

  • Vujcic M & Topisirovic L (1993) Molecular analysis of the rolling-circle replicating plasmid pA1 ofLactobacillus plantarum A112. Appl. Environ. Microbiol. 59: 274–280

    PubMed  Google Scholar 

  • Weicker MJ & Chambliss GH (1990) Site-directed mutagenesis of the catabolite repression operator sequence inBacillus subtilis. Proc. Natl. Acad. Sci. USA 87: 6238–6242

    PubMed  Google Scholar 

  • West CA & Warner PJ (1985) Plasmid profiles and transfer of plasmid-encoded antibiotic resistance inLactobacillus plantarum. Appl. Environ. Microbiol. 50: 1319–1321

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pouwels, P.H., Leer, R.J. Genetics of lactobacilli: Plasmids and gene expression. Antonie van Leeuwenhoek 64, 85–107 (1993). https://doi.org/10.1007/BF00873020

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00873020

Key words

Navigation