Advertisement

Journal of engineering physics

, Volume 59, Issue 5, pp 1441–1447 | Cite as

Nonlinear equations of heat and mass transfer in dispersed media

  • A. I. Moshinskii
Article

Abstract

A discussion is presented of aspects of the description of heat- and mass-transfer processes in dispersed media on the basis of a single equation for the concentration of the disperse phase (temperature) in the dispersion medium when there is a nonlinear relationship between the concentrations of the disperse phase and dispersion medium at the interface.

Keywords

Mass Transfer Statistical Physic Disperse Phase Nonlinear Equation Single Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    Yu. A. Buevich and E. B. Perminov, Inzh.-Fiz. Zh.,38, No. 1, 29–37 (1980).Google Scholar
  2. 2.
    Yu. A. Buevich, Ibid.,54, No. 5, 770–779 (1988).Google Scholar
  3. 3.
    Yu. A. Buevich, Heat and Mass Transfer. Heat and Mass Transfer in Two-Phase and Disperse Systems: Problem Reports. Minsk (1988), Sections 4, 5, pp. 100–114.Google Scholar
  4. 4.
    Yu. A. Buevich, Inzh.-Fiz. Zh.,46, No. 4, 593–600 (1984).Google Scholar
  5. 5.
    N. V. Antonishin and V. V. Lushchikov, Transport Processes in Equipment with Disperse Systems [in Russian], Minsk (1986), pp. 3–25.Google Scholar
  6. 6.
    E. V. Venitsianov and R. N. Rubinshtein, Dynamics of Sorption from Liquids, Moscow (1983).Google Scholar
  7. 7.
    L. K. Filippov, Dokl. Akad. Nauk SSSR,305, No. 2, 301–305 (1989).Google Scholar
  8. 8.
    R. I. Nigmatulin, Principles of the Mechanics of Heterogeneous Media, Moscow (1978).Google Scholar
  9. 9.
    Yu. A. Buevich, Yu. A. Korneev, and I. N. Shchelchkova, Inzh.-Fiz. Zh.,30, No. 6, 979–985 (1976).Google Scholar
  10. 10.
    A. I. Moshinskii, Inzh.-Fiz. Zh.,58, No. 3, 461–470 (1990).Google Scholar
  11. 11.
    M. A. Lavrent'ev and B. V. Shabat, Methods of the Theory of Functions of a Complex Variable [in Russian], Moscow (1973).Google Scholar
  12. 12.
    L. B. Berliner and V. N. Gorin, Teoret. Osn. Khim. Tekhnol.,7, No. 5, 643–650 (1973).Google Scholar
  13. 13.
    I. V. Melikhov and L. B. Berliner, Ibid.,12, No. 1, 48–53 (1978).Google Scholar
  14. 14.
    P. P. Zolotarev, Izv. Akad. Nauk SSSR Ser. Khim., No. 8, 1703–1709 (1970).Google Scholar
  15. 15.
    P. P. Zolotarev and V. I. Ulin, Ibid., No. 10, 2370–2373 (1975).Google Scholar
  16. 16.
    P. P. Zolotarev and M. M. Dubinin, Dokl. Akad. Nauk SSSR,210, No. 1, 136–139 (1975).Google Scholar
  17. 17.
    P. P. Zolotarev and L. V. Radushkevich, Izv. Akad. Nauk SSSR Ser. Khim., No. 8, 1906–1908 (1968).Google Scholar
  18. 18.
    R. Curant and D. Gilbert, Methods of Mathematical Physics [Russian translation], Vol. 1, Moscow, Leningrad (1934).Google Scholar
  19. 19.
    L. V. Kantorovich and V. I. Krylov, Approximate Methods of Higher Analysis [in Russian], Moscow, Leningrad (1962).Google Scholar
  20. 20.
    V. S. Nustrov and B. N. Saifullaev, Inzh.-Fiz. Zh.,54, No. 5, 779–786 (1988).Google Scholar
  21. 21.
    E. S. Komm, Structural Models of the Pore Space of Rocks, Leningrad (1985).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • A. I. Moshinskii
    • 1
  1. 1.“State Institute of Applied Chemistry” Scientific-Industrial AssociationLeningrad

Personalised recommendations