Advertisement

Applied Categorical Structures

, Volume 3, Issue 1, pp 29–77 | Cite as

Higher categories, strings, cubes and simplex equations

  • Ross Street
Article

Abstract

This survey of categorical structures, occurring naturally in mathematics, physics and computer science, deals with monoidal categories; various structures in monoidal categories; free monoidal structures; Penrose string notation; 2-dimensional categorical structures; the simplex equations of field theory and statistical mechanics; higher-order categories and computads; the (v,d)-cube equations; the simplex equations as cubical cocycle equations; and, cubes, braids and higher braids.

Mathematics Subject Classifications (1991)

18D00 82B23 52B11 

Key words

Monoidal category tensor category n-category bicategory string notation d-simplex equation braiding tangles cubes cocycle higher braids pasting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Iain Aitchison: The geometry of oriented cubes,Macquarie Mathematics Reports 86-002 (December 1986).Google Scholar
  2. 2.
    Iain Aitchison:String diagrams for non-abelian cocycle conditions, handwritten notes, talk presented at Louvain-la-Neuve, Belgium, 1987.Google Scholar
  3. 3.
    J. Bénabou: Introduction to bicategories,Reports of the Midwest Category Seminar, Lecture Notes in Math. 47, Springer-Verlag, Berlin, 1967, pp. 1–77.Google Scholar
  4. 4.
    Stephen Boyer and André Joyal: Separable algebras and Seifert surfaces, Preprint (1994).Google Scholar
  5. 5.
    A. Carboni and R. F. C. Walters: Cartesian bicategories I,J. Pure Appl. Algebra 49 (1987), 11–32.Google Scholar
  6. 6.
    J. Scott Carter and Masahico Saito: On formulations and solutions of simplex equations, Preprint (1993).Google Scholar
  7. 7.
    Frank De Meyer and Edward Ingraham:Separable Algebras over Commutative Rings, Lecture Notes in Math. 181, Springer-Verlag, Berlin, 1971.Google Scholar
  8. 8.
    P. Freyd and D. Yetter: Braided compact closed categories with applications to low dimensional topology,Advances in Math. 77 (1989), 156–182.Google Scholar
  9. 9.
    P. Freyd and D. Yetter: Coherence theorems via knot theory,J. Pure Appl. Algebra 78 (1992), 49–76.Google Scholar
  10. 10.
    Igor Frenkel and Gregory Moore: Simplex equations and their solutions,Physics, Springer-Verlag, 1991, 13 pp.Google Scholar
  11. 11.
    R. Gordon, A. J. Power, and Ross Street: Coherence for tricategories,Memoirs AMS (to appear).Google Scholar
  12. 12.
    Marco Grandis: Homotopical algebra in homotopical categories,Applied Categorical Structures (to appear).Google Scholar
  13. 13.
    J. W. Gray:Formal Category Theory: Adjointness for 2-Categories, Lecture Notes in Math. 391, Springer-Verlag, Berlin, 1974.Google Scholar
  14. 14.
    J. W. Gray: Coherence for the tensor product of 2-categories, and braid groups,Algebra, Topology, and Category Theory (a collection of papers in honour of Samuel Eilenberg), Academic Press, 1976, pp. 63–76.Google Scholar
  15. 15.
    Gérard Huet: Confluent reductions: abstract properties and applications to term rewriting systems,J. Association for Computing Machinery 27 (1980), 797–821.Google Scholar
  16. 16.
    Michio Jimbo (ed.):Yang-Baxter Equation in Integrable Systems, Advanced Series in Mathematical Physics Volume 10, World Scientific, Singapore, 1989.Google Scholar
  17. 17.
    Michael Johnson:Pasting Diagrams in n-Categories with Applications to Coherence Theorems and Categories of Paths, PhD Thesis, University of Sydney (October 1987).Google Scholar
  18. 18.
    Michael Johnson and Robert Walters: On the nerve of an n-category,Cahiers de topologie et géométrie différentielle catégorique 28 (1987), 257–282.Google Scholar
  19. 19.
    A. Joyal and R. Street: Tortile Yang-Baxter operators in tensor categories,J. Pure Appl. Algebra 71 (1991), 43–51.Google Scholar
  20. 20.
    A. Joyal and R. Street: The geometry of tensor calculus I,Advances in Math. 88 (1991), 55–112.Google Scholar
  21. 21.
    A. Joyal and R. Street: An introduction to Tannaka duality and quantum groups; inCategory Theory, Proceedings, Como 1990; Part II of Lecture Notes in Math. 1488, Springer-Verlag, Berlin, 1991, pp. 411–492.Google Scholar
  22. 22.
    A. Joyal and R. Street: Braided tensor categories,Advances in Math 102 (1993), 20–78.Google Scholar
  23. 23.
    M. M. Kapranov and V. A. Voevodsky: Combinatorial-geometric aspects of polycategory theory: pasting schemes and higher Bruhat orders (List of results),Cahiers topologie et géométrie différentielle catégoriques 32 (1991), 11–27.Google Scholar
  24. 24.
    M. M. Kapranov and V. A. Voevodsky: 2-Categories and Zamolodehikov tetrahedra equations,Proc. Symp. Pure Math. (to appear).Google Scholar
  25. 25.
    G. M. Kelly: On Mac Lane's conditions for coherence of natural associatives, commutativities, etc.,J. Algebra 1 (1964), 397–402.Google Scholar
  26. 26.
    G. M. Kelly and R. H. Street: Review of the elements of 2-categories,Category Seminar Sydney 1972/73, Lecture Notes in Math. 402, Springer-Verlag, Berlin, 1974, pp. 75–103.Google Scholar
  27. 27.
    Anders Kock: Generators and relations for Δ as a monoidal 2-category,Beitrage zur Algebra und Geometrie 34 (1993), 201–208.Google Scholar
  28. 28.
    Christian Kassel and Vladimir Turaev: Double constructions for monoidal categories,Publication de l'Institut de Recherche Mathématique Avancée, Strasbourg (1992), 507/P-294.Google Scholar
  29. 29.
    V. V. Lyubashenko: Tensor categories and RCFT, I. Modular transformations: II. Hopf algebras in rigid categories, Academy of Sciences of the Ukrainian SSR, 1990 Preprints ITP-90-30E and 59E.Google Scholar
  30. 30.
    V. V. Lyubashenko: Ribbon categories as modular categories, Preprint (14 July 1993).Google Scholar
  31. 31.
    S. Mac Lane: Natural associativity and commutativity,Rice University Studies 49 (1963), 28–46.Google Scholar
  32. 32.
    J. M. Maillet and F. Nijhoff: Multidimensional integrable lattice models, quantum groups, and the d-simplex equations,Proceedings of the Kiev Conference on Nonlinear and Turbulent Processes in Physics, 1989.Google Scholar
  33. 33.
    J. M. Maillet and F. Nijhoff: The tetrahedron equation and the four-simplex equation,Physics Letter A 134, 221–228.Google Scholar
  34. 34.
    Yu. I. Manin and V. V. Schechtman: Arrangements of hyperplanes, higher braid groups and higher Bruhat orders,Advanced Studies in Pure Mathematics 17 (1989), 289–308.Google Scholar
  35. 35.
    Narcisco Martì-Oliet and José Meseguer: From Petri nets to linear logic,SRI International Computer Science Laboratory, Report SRI-CSL-89-4R, Project 6729, Menlo Part, California (June 1989).Google Scholar
  36. 36.
    G. Moore and N. Seiberg: Classical and quantum conformal field theory,Comm. Math. Phys. 123 (2) (1989) 177–254.Google Scholar
  37. 37.
    R. Penrose and R. Rindler:Spinors and Space-Time, Volume 1, Cambridge University Press, Cambridge, U. K., 1984.Google Scholar
  38. 38.
    A. J. Power: A 2-categorical pasting theorem,J. Algebra 129 (1990), 439–445.Google Scholar
  39. 39.
    A. J. Power: A n-categorical pasting theorem; inCategory Theory, Proceedings, Como 1990; Lecture Notes in Math. 1488, Springer-Verlag, Berlin, 1991, pp. 326–358.Google Scholar
  40. 40.
    Vaughan Pratt: Modeling concurrency with geometry, Preprint (Stanford University, August 1990).Google Scholar
  41. 41.
    N. Yu. Reshetikhin and V. G. Turaev: Ribbon graphs and their invariants derived from quantum groups,Comm. Math. Phys. 127 (1) (1990), 1–26.Google Scholar
  42. 42.
    Shum Mei Chee: Tortile tensor categories,J. Pure Appl. Algebra 93 (1994), 57–110.Google Scholar
  43. 43.
    James D. Stasheff: On the homotopy associativity of H-spaces, I & II,Transactions Amer. Math. Soc. 108 (1963), 275–312.Google Scholar
  44. 44.
    Richard Steiner: The algebra of directed complexes,Applied Categorical Structures 1 (1993), 247–284.Google Scholar
  45. 45.
    Ross Street: Two constructions on lax functors,Cahiers de topologie et géometrie différentielle 13 (1972), 217–264.Google Scholar
  46. 46.
    Ross Street: Limits indexed by category-valued 2-functors,J. Pure Appl. Algebra 8 (1976), 148–181.Google Scholar
  47. 47.
    Ross Street: The algebra of oriented simplexes,J. Pure Appl. Algebra 49 (1987), 283–335.Google Scholar
  48. 48.
    Ross Street: Gray's tensor product of 2-categories (Handwritten Notes, Feb. 1988).Google Scholar
  49. 49.
    Ross Street: Parity complexes,Cahiers topologie et géométrie différentielle catégoriques 32 (1991), 315–343.Google Scholar
  50. 50.
    V. G. Turaev: The Yang-Baxter equation and invariants of links,Invent. Math. 92 (1988), 527–553.Google Scholar
  51. 51.
    V. G. Turaev: Quantum invariants of 3-manifolds,Publication de l'Institut de Recherche Mathématique Avancée 509/P-295, Strasbourg (October 1992).Google Scholar
  52. 52.
    Dominic Verity: Higher-dimensional nerves (handwritten notes, 1991).Google Scholar
  53. 53.
    D. N. Yetter: Quantum groups and representations of monoidal categories,Math. Proc. Camb. Phil. Soc. (to appear).Google Scholar
  54. 54.
    A. B. Zamolodchikov: Tetrahedra equations and integrable systems in three-dimensional space,Soviet Phys. JETP 52 (1980), 325;Commun. Math. Phys. 70 (1981), 489.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Ross Street
    • 1
  1. 1.Mathematics DepartmentMacquarie UniversityAustralia

Personalised recommendations