Some remarks on Maltsev and Goursat categories
Article
- 247 Downloads
- 57 Citations
Abstract
Our aim is to analyze and to publicize two interesting properties — well known in universal algebra for varieties — that a regular category, and in particular an exact category, may possess: theMaltsev property, asserting the permutabilitySR=RS of equivalence relations on any object, and the weakerGoursat property, asserting only thatSRS=RSR. We investigate these properties, give various equivalent forms of them, and develop some of their useful consequences.
Key words
Category regular exact variety equivalence relation congruence Maltsev Goursat Kan complexMathematics Subject Classifications (1991)
18B10 18G30 08B05Preview
Unable to display preview. Download preview PDF.
References
- 1.M. Barr: Catégories exactes,C. R. Acad. Sci. Paris. Sér. A–B 272 (1971), A1501-A1503.Google Scholar
- 2.M. Barr, P.A. Grillet, and D.H. van Osdol: Exact categories and categories of sheaves,Lecture Notes in Mathematics 236, Springer, Berlin (1971).Google Scholar
- 3.M. Barr: On categories with effective unions,Lecture Notes in Mathematics 1384, Springer-Verlag (1988), 19–35.Google Scholar
- 4.M. Barr and C. Wells:Toposes, Triples, and Theories, Springer-Verlag, New York-Heidelberg-Berlin-Tokyo, 1985.Google Scholar
- 5.A. Carboni, J. Lambek, and M.C. Pedicchio: Diagram chasing in Mal'cev categories,J. Pure Appl. Algebra 69 (1991), 271–284.Google Scholar
- 6.A. Carboni and S. Mantovani: An elementary characterization of categories of separated objects,J. Pure Appl. Algebra 89 (1993), 63–92.Google Scholar
- 7.A. Day and R. Freese: A characterization of identities implying congruence modularity I,Canad. J. Math. 32 (1980), 1140–1167.Google Scholar
- 8.B.J. Day and G.M. Kelly: On topological quotient maps preserved by pullbacks or products,Proc. Cambridge Phil. Soc. 67 (1970), 553–558.Google Scholar
- 9.E. Faro: On a conjecture of Lawvere, Preprint, SUNY Buffalo, 1989.Google Scholar
- 10.T.H. Fay: On commuting congruences in regular categories,Math. Coll. Univ. Cape Town 11 (1977), 13–31.Google Scholar
- 11.T.H. Fay: On categorial conditions for congruences to commute,Algebra Univ. 8 (1978), 173–179.Google Scholar
- 12.P.J. Freyd and A. Scedrov:Categories, Allegories, North-Holland, Amsterdam-New York-Oxford-Tokyo, 1990.Google Scholar
- 13.N. Funuyama and T. Nakayama: On the distributivity of a lattice of lattice congruences,Proc. Imp. Acad. Sci. Tokyo 18 (1942), 553–554.Google Scholar
- 14.P. Gabriel and M. Zisman:Calculus of Fractions and Homotopy Theory, Springer-Verlag, Berlin-Heidelberg-New York, 1967.Google Scholar
- 15.É. Goursat: Sur les substitutions orthogonales ...,Ann. Sci. Éc. Norm. Sup. 3(6) (1889), 9–102.Google Scholar
- 16.J. Hagemann and A. Mitschke: Onn-permutable congruences,Algebra Univ. 3 (1973), 8–12.Google Scholar
- 17.G. Janelidze and G.M. Kelly: Galois theory and a general notion of central extension,J. Pure Appl. Algebra, to appear.Google Scholar
- 18.P.T. Johnstone:Stone Spaces, Cambridge University Press, 1982.Google Scholar
- 19.P.T. Johnstone: Affine categories and naturally Mal'cev categories,J. Pure Appl. Algebra 61 (1981), 251–256.Google Scholar
- 20.G.M. Kelly: Monomorphisms, epimorphisms, and pull-backs,J. Austral. Math. Soc. 9 (1969), 124–142.Google Scholar
- 21.G.M. Kelly: A note on relations relative to a factorization system,Proc. Conf. on Category Theory (Como, 1990),Springer Lecture Notes in Mathematics 1448 (1991), 249–261.Google Scholar
- 22.A Klein: Relations in categories,Ill. J. Math. 14 (1970), 536–550.Google Scholar
- 23.J. Lambek: Goursat's theorem and homological algebra,Can. Math. Bull. 7 (1964), 597–608.Google Scholar
- 24.J. Lambek: On the ubiquity of Mal'cev operations,Contemporary Math. 131 (1992), 135–146.Google Scholar
- 25.A.I. Mal'cev: On the general theory of algebraic systems,Mat. Sbornik N.S. 35 (1954), 3–20.Google Scholar
- 26.J. Meisen:Relations in Categories, Thesis, McGill Univ., 1972.Google Scholar
- 27.J. Meisen: On bicategories of relations and pullback spans,Comm. Alg. 1 (1974), 377–401.Google Scholar
- 28.A. Mitschke: Implication algebras are 3-permutable and 2-distributive,Algebra Univ. 1 (1971), 182–186.Google Scholar
- 29.J.C. Moore: Homotopie des complexes monoïdaux, Séminaire H. Cartan, 1954/55, Exposé 18.Google Scholar
- 30.G. Richter: Mal'cev conditions for categories, inCategorical Topology (Proc. Conference Toledo, Ohio 1983), Heldermann Verlag, Berlin 1984, pp. 453–469.Google Scholar
- 31.C.M. Ringel: The intersection property of amalgamations,J. Pure Appl. Algebra 2 (1972), 341–342.Google Scholar
- 32.E.T. Schmidt: Onn-permutable equational classes,Acta Sci. Math. (Szeged) 33 (1972), 29–30.Google Scholar
Copyright information
© Kluwer Academic Publishers 1993