Advertisement

Antonie van Leeuwenhoek

, Volume 67, Issue 4, pp 371–375 | Cite as

Assessment of survival during starvation ofEscherichia coli andKlebsiella pneumoniae in artificial urine: analysis of the kinetics of colony formation

  • O. Julia
  • J. Vives-Rego
  • M. Vilamú
  • R. López-Amorós
  • F. Utzet
Research Papers
  • 31 Downloads

Abstract

A kinetic model of colony formation was proposed by Hattori, based on a count of the colonies that appear on a plate in successive short intervals of time. In this model, three parameters (λ,tr and N) are defined, which reflect the ability of a bacterium to yield colonies and allow us to described the dynamics of bacterial populations in soil and ofE. coli at different growth phases. In this paper we report a reparametrization of the kinetic model of colony formation, with the aim of facilitating more accurate calculation of λ andtr. Moreover, we observed that during the starvation ofE. coli andK. pneumoniae in urine, λ can be used to assess survival, since this parameter clearly decreases during starvation. Retardation time values (tr) were similar inE. coli andK. pneumoniae throughout the starvation experimental period.

Key words

stravation survival first order reaction kinetics colony formation urine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bradley, D.E., D.E. Taylor & D.R. Cohen (1980) Specification of surface mating systems among conjugative drug resistance plasmids inE. coli K-12. J. Bacteriol. 143: 1466–1470.Google Scholar
  2. Chambers, M. & C.M. Kunin, (1985). The osmopropective properties of urine for bacteria: the prospective effect of betaine and human urine against low pH and high concentrations of electrolytes, sugars, and urea. J. Infec. Dis. 152: 1308–1316.Google Scholar
  3. Fisher, R. A. (1922) The accuracy of the plating method of the estimating the density of bacterial populations. Ann. of Applied Biol. Vol. IX: 325–359. Reprinted in: R.A. Fisher 1950 Contributions to Mathematical Statistics. Wiley, New York.Google Scholar
  4. Goel, N.S. & N. Richter-Dyn, (1974). Bacteriophage growth. 112–118In Sthochastic models in biology. Academic Press, Inc. New York.Google Scholar
  5. Hashimoto, T. & T. Hattori (1989) Grouping of soil bacteria by analysis of colony formation on agar plates Biol. Fertil. Soils 7: 198–201.Google Scholar
  6. Hattori, T. (1982)a Analysis of plate count data of bacteria in natural environments. J. Gen. Appl. Microbiol 28: 13–22.Google Scholar
  7. Hattori, T. (1982)b Mathematical equations describing the behaviour of soil bacteria. Soil Biol. Biochem. 14: 523–527.Google Scholar
  8. Hattori, T. (1983) Further analysis of plate count data of bacteria.J. Gen. Appl. Microbiol. 29. 9–16.Google Scholar
  9. Hattori, T. (1988) The viable count. Quantitative and environmental aspects London: Springer-Verlag.Google Scholar
  10. Ishikuri, S. & T. Hattori (1985) Formation of bacterial colonies in successive time intervals. Applied and Environmental Microbiology 49: 870–873.Google Scholar
  11. Mochizuki, M. & T. Hattori (1987) Kinetic study of growth throughout the lag phase and the exponential phase ofEscherichia coli. FEMS Microbiology Ecology 45: 291–296.Google Scholar
  12. Miller, J.H. (1977) Experiments in molecular genetics pag. 431 New York: Cold Spring Harbor laboratory.Google Scholar
  13. Sambrook, J., E.F. Fristch & T. Maniatis (1989) Molecular cloning. Cold Spring Harbor, New York.Google Scholar
  14. Thomas, L.V. & C.A. Smith (1987) Incompatibility group P plasmids: genetics, evolution, and use in genetics manipulation. Ann. Rev. Microbiol. 41: 77–101.Google Scholar
  15. Whang, K. & T. Hattori (1988) Oligotrophic bacteria from rendzina forest soil. Antonie van Leeuwenhoek 54: 19–36.Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • O. Julia
    • 1
  • J. Vives-Rego
    • 2
  • M. Vilamú
    • 2
  • R. López-Amorós
    • 2
  • F. Utzet
    • 3
  1. 1.Department d'Estadística, Facultat de MatemàtiquesUniversitat de BarcelonaBarcelonaSpain
  2. 2.Department de Microbiologia, Facultat de BiologiaUniversitat de BarcelonaSpain
  3. 3.Department de MatemàtiquesUniversitat Autònoma de BarcelonaBellaterraSpain

Personalised recommendations