Advertisement

Journal of engineering physics

, Volume 58, Issue 6, pp 686–692 | Cite as

Interfacial stability and heat transfer during film boiling on a vertical surface

  • V. S. Granovskii
  • V. B. Khabenskii
  • S. M. Shmelev
Article

Abstract

From a consideration of a model for the development of perturbations at the interface during film boiling on a vertical surface in a large volume of saturated liquid, the conditions have been found for the loss of stability of the vapor-liquid interface, which characterizes the maximum attainable vapor film thickness. The motion of the vapor in the “thin” parts of the film not covered by bubbles is assumed to be laminar. The analytical expression which is obtained for heat transfer has the form Nu = 0.19 Ar1/3 and satisfactorily generalizes the experimental data.

Keywords

Experimental Data Heat Transfer Statistical Physic Film Thickness Large Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    Y. Y. Hsu and J. W. Westwater, Chem. Eng. Progr. Sympos. Ser.,56, No. 30, 15–23 (1960).Google Scholar
  2. 2.
    S. G. Bankoff, Chem. Eng. Progr. Sympos. Ser.,56, No. 30, 23–24 (1960).Google Scholar
  3. 3.
    V. M. Borishanskii and B. S. Fokin, Heat and Mass Transfer [in Russian], Vol. 3, Minsk (1965), pp. 109–117.Google Scholar
  4. 4.
    G. E. Coury and A. E. Dukler, 4th Internat. Heat Transfer Conf., Paris, Vol. 5, Elsevier Publ. Co., Amsterdam (1970), item 3, 6.Google Scholar
  5. 5.
    N. V. Sur'yanaraiyana and Kh. Mert, Teploperedacha,94, No. 4, 44–53 (1972).Google Scholar
  6. 6.
    D. A. Labuntsov and A. V. Gomelauri, Tr. M. é. I., No. 310, 41–50 (1976).Google Scholar
  7. 7.
    é. K. Kalinin, G. A. Dreitser, V. V. Kostyuk, and I. I. Berlin, Methods of Calculating Coupled Heat Transfer Problems [in Russian], Moscow (1983).Google Scholar
  8. 8.
    K. V. Sharma, P. K. Sarma, and V. D. Rao, Proc. 8th Nat. Heat and Mass Transfer Conf., Vasakhapathan, Dec. 29–31, 1985, pp. 479–486.Google Scholar
  9. 9.
    V. M. Budov, O. B. Samoilov, V. A. Sokolov, and I. A. Shemagin, At. énerg.,65, No. 3, 173–176 (1988).Google Scholar
  10. 10.
    E. M. Greitzer and F. H. Abernathy, Int. J. Heat Mass Transf.,15, 475–491 (1972).Google Scholar
  11. 11.
    J. G. M. Andersen, A.I.Ch.E. Sympos. Ser.,73, No. 164, 2–6 (1977).Google Scholar
  12. 12.
    Byui and Dir, Teploperedacha,107, No. 4, 18–27 (1985).Google Scholar
  13. 13.
    V. M. Borishanskii, Problems of Heat Transfer and Hydraulics in Two-Phase Media [in Russian], Moscow-Leningrad (1961), pp. 128–138.Google Scholar
  14. 14.
    V. M. Borishanskii, P. A. Maslichenko, and B. S. Fokin, Heat and Mass Transfer [in Russian], Vol. 2, Minsk (1962), pp. 128–131.Google Scholar
  15. 15.
    V. S. Granovskii, V. B. Khabenskii, and S. M. Shmelev, Tr. Ts.K.T.I., No. 241, 32–37 (1988).Google Scholar
  16. 16.
    Kokh, Teploperedacha,84, No. 1, 70–78 (1962).Google Scholar
  17. 17.
    S. S. Kutateladze and V. E. Nakoryakov, Heat and Mass Transfer and Waves in Gas-Liquid Systems [in Russian] (1984).Google Scholar
  18. 18.
    L. A. Bromley, Chem. Eng. Progr.,46, No. 5, 221–227 (1950).Google Scholar
  19. 19.
    D. P. Dzhordan [Jordan], Advances in Heat Transfer [in Russian], Moscow (1971), pp. 68–143.Google Scholar
  20. 20.
    D. A. Labuntsov, Teploénergetika, No. 5, 60–61 (1963).Google Scholar
  21. 21.
    V. M. Borishanskii and B. S. Fokin, Convective Heat Transfer in Single-Phase and Two-Phase Flows [in Russian], Moscow-Leningrad (1964), pp. 221–235.Google Scholar
  22. 22.
    é. K. Kalinin, I. I. Berlin, V. G. Karavaev, et al., Inzh.-Fiz. Zh.,33, No. 1, 54–59 (1977).Google Scholar
  23. 23.
    V. V. Klimenko and S. Yu. Snytin, Teploénergetika, No. 3, 22–23 (1983).Google Scholar
  24. 24.
    G. I. Balashov, I. I. Berlin, V. G. Karavaev, and V. V. Kostyuk, Tr. V.Z.M.I., Vol. 10, No. 3, 148–162 (1974).Google Scholar
  25. 25.
    J. Ruzicka, Bull. de la Inst. Internat. du Froid, Annexe 1958–1, pp. 323–329.Google Scholar
  26. 26.
    V. S. Barsukov, I. I. Berlin, V. V. Kostyuk, and S. I. Tarasov, Tr. V.Z.M.I., No. 9, 50–57 (1980).Google Scholar
  27. 27.
    V. V. Klimenko, A. A. Kurilenko, V. I. Panevin, and V. P. Firsov, Tr. M.é.I., No. 589, 38–43 (1982).Google Scholar
  28. 28.
    V. V. Samsonov and A. V. Gomelauri, Tr. M.é.I., No. 310, 58–61 (1976).Google Scholar
  29. 29.
    V. V. Klimenko, Tr. M.é.I., No. 310, 37–41 (1976).Google Scholar
  30. 30.
    M. E. Ivanov and N. K. Elukhin, Kislorod, No. 3, 19–28 (1958).Google Scholar
  31. 31.
    A. A. Kurilenko, V. A. Semiglazov, V. I. Panevin, et al., Inzh.-Fiz. Zh.,44, No. 3, 421–425 (1983).Google Scholar
  32. 32.
    Khis and Kostello, The Development and Technology of Mechanical Engineering [in Russian], Vol. 88, No. l, 11–19 (1966).Google Scholar
  33. 33.
    C. R. Class, J. R. de Haan, M. Piccone, and R. B. Cost, Adv. Cryog. Eng.,5, 254–261 (1960).Google Scholar
  34. 34.
    Y. Y. Hsu and J. W. Westwater, A.I.Ch.E. J.,4, 58–62 (1958).Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • V. S. Granovskii
  • V. B. Khabenskii
  • S. M. Shmelev

There are no affiliations available

Personalised recommendations