Journal of engineering physics

, Volume 61, Issue 4, pp 1193–1198 | Cite as

Boundary conditions for the heat- and mass-transfer equations of coarsely disperse aerosols in a turbulent flow

  • I. V. Derevich
  • V. M. Eroshenko


Boundary conditions taking account of particle interaction with the boundary surface are obtained on the basis of the Chapman-Enskog method of solving the kinetic equation.


Boundary Condition Statistical Physic Kinetic Equation Boundary Surface Particle Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    K. R. Nagvi, K. J. Mork, and Waldenstrom, Phys. Rev. Lett.,49, No. 5, 304–307 (1982).Google Scholar
  2. 2.
    V. Protopescu and T. Keyes, Phys. Lett. A,95, No. 3–4, 139–142 (1983).Google Scholar
  3. 3.
    S. V. Menon, V. Kumar, and D. S. Sahi, Phys. A,135, 63–79 (1986).Google Scholar
  4. 4.
    I. V. Derevich and L. I. Zaichik, Inzh.-fiz. Zh.,555, No. 5, 735–739 (1988).Google Scholar
  5. 5.
    I. V. Derevich and L. I. Zaichik, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 5, 96–104 (1988).Google Scholar
  6. 6.
    S. K. Friedlander and H. T. Johnstone, Ind. Eng. Chem.,49, No. 7, 1151–1156 (1957).Google Scholar
  7. 7.
    Mengityurk and Sverdrup, Énerg. Mash. Ustan.,104, No. 1, 47–56 (1982).Google Scholar
  8. 8.
    V. I. Klyatskii, Stochastic Equations and Waves in Randomly Inhomogeneous Media [in Russian], Moscow (1980).Google Scholar
  9. 9.
    S. Chapman and T. Cowling, Mathematical Theory of Inhomogeneous Gases [in Russian], Moscow (1960).Google Scholar
  10. 10.
    F. Durst, Teor. Osnov. Inzh. Rasch.,104, No. 3, 100–113 (1982).Google Scholar
  11. 11.
    T. Tsuji and Y. Morikawa, J. Fluid Mech.,120, 385–409 (1982).Google Scholar
  12. 12.
    T. Tsuji, Y. Morikawa, and H. Shioni, J. Fluid Mech.,139, 417–434 (1984).Google Scholar
  13. 13.
    T. Kora, Introduction to Kinetic Theory of Stochastic Processes in Gases [Russian translation], Moscow (1983).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • I. V. Derevich
    • 1
  • V. M. Eroshenko
    • 1
  1. 1.G. M. Krzhizhanovskii State Scientific-Research Power InstituteMoscow

Personalised recommendations