Advertisement

Journal of engineering physics

, Volume 53, Issue 4, pp 1204–1209 | Cite as

Local heating of a cylinder with an inclusion

  • Yu. M. Kolyano
  • E. G. Ivanik
  • A. Z. Blavatskii
Article
  • 17 Downloads

Abstract

Exact and approximate solutions are presented for the stationary heat-conduction problem for a cylinder with a foreign inclusion for a discontinuous boundary condition of the first kind. Limits of applicability are set for the approximate solutions.

Keywords

Boundary Condition Statistical Physic Approximate Solution Local Heating Discontinuous Boundary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    Ya. S. Podtrigach, Dokl. Akad. Nauk UkrSSR, Ser. A, No. 7, 872–874 (1963).Google Scholar
  2. 2.
    V. A. Boley and J. H. Weiner, Theory of Thermal Stresses, Wiley (1960).Google Scholar
  3. 3.
    Ya. S. Podstrigach, Stress Concentration [in Russian], No. 1, Kiev (1965), pp. 54–58.Google Scholar
  4. 4.
    Ya. S. Podstrigach, Inzh.-Fiz. Zh.,7, No. 10, 129–136 (1963).Google Scholar
  5. 5.
    Ya. S. Podstrigach, V. A. Lomakin, and Yu. M. Kolyano, Thermoelasticity of Bodies of Inhomogeneous Structure [in Russian], Moscow (1984).Google Scholar
  6. 6.
    Yu. M. Kolyano, Second All-Union Conference, “Lavrent'ev Lectures on Mathematics, Mechanics and Physics,” [in Russian], Kiev (1985), pp. 119–121.Google Scholar
  7. 7.
    G. A. Korn and T. M. Korn, Handbook on Mathematics for Scientists and Engineers, McGraw-Hill (1975).Google Scholar
  8. 8.
    A. V. Lykov, Theory of Heat Conduction [in Russian], Moscow (1967).Google Scholar
  9. 9.
    I. Sneddon, Fourier Transformations [Russian translation], Moscow (1955).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • Yu. M. Kolyano
    • 1
  • E. G. Ivanik
    • 1
  • A. Z. Blavatskii
    • 1
  1. 1.Institute of Mechanics and Mathematics ProblemsAcademy of Sciences of the Ukrainian 'SSRLvov

Personalised recommendations