Skip to main content
Log in

A functional chimeric membrane subunit of an ion-translocating ATPase

  • Research Articles
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A chimeric transport protein was made by expression of a fusion of thearsB genes fromEscherichia coli plasmid R773 andStaphylococcus aureus plasmid pI258. The two genes were fused to encode a functional protein with first eight membrane spanning α-helices of theS. aureus and the last four helices of theE. coli protein. The hybrid protein provided arsenite resistance and transport. When anarsA gene was expressed in trans with the ArsB proteins encoded by the R773, pI258 and fusion genes, arsenite efflux was dependent on chemical but not electrochemical energy. The Ars system is hypothesized to be a novel transport system that functions as a primary ATP-driven pump or a secondary carrier, depending on the subunit composition of the complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bröer S, Ji G, Bröer A & Silver S (1993) Arsenic efflux governed by the arsenic resistance determinant ofStaphylococcus aureus plasmid pl258. J. Bacteriol. 175: 3480–3485

    PubMed  Google Scholar 

  • Butlin JD, Cox GB & Gibson F (1971) Oxidative phosphorylation inEscherichia coli K12. Biochem. J. 124: 75–81

    PubMed  Google Scholar 

  • Chen C-M, Misra T, Silver S & Rosen BP (1986) Nucleotide sequence of the structural genes for an anion pump: the plasmid-encoded arsenical resistance operon. J. Biol. Chem. 261: 15030–15038

    Google Scholar 

  • Chen C-M, Mobley HLT & Rosen BP (1985) Separate resistance to arsenate and arsenite (antimonate) encoded by the arsenical resistance operon of R-factor R773. J. Bacteriol. 161: 758–763

    Google Scholar 

  • Henderson PJ (1990) Proton-linked sugar transport systems in bacteria. J. Bioenerg. Biomemb. 22: 525–69

    Google Scholar 

  • Hsu CM & Rosen BP (1989) Characterization of the catalytic subunit of an anion pump. J. Biol. Chem. 264: 17349–17354

    PubMed  Google Scholar 

  • Ji G & Silver S (1992) Regulation and expression of the arsenic resistance operon fromStaphylococcus aureus plasmid pl258. J. Bacteriol. 174: 3684–3694

    PubMed  Google Scholar 

  • Kaur P & Rosen BP (1992) Plasmid-encoded resistance to arsenic and antimony. Plasmid 27: 29–40

    PubMed  Google Scholar 

  • Kyte J & Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157: 105–132

    PubMed  Google Scholar 

  • Maniatis T, Fritsch EF & Sambrook J (1982) Molecular cloning, a laboratory manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Miller J (1972) Experiments in Molecular Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Mobley HLT & Rosen BP (1982) Energetics of plasmid-mediated arsenate resistance inEscherichia coli. Proc. Natl. Acad. Sci. USA. 79: 6119–6122

    PubMed  Google Scholar 

  • Oden KL, Gladysheva TB & Rosen BP (1994) Arsenate reduction mediated by the plasmid-encoded ArsC protein is coupled to glutathione, Molec. Microbiol. In press

  • Rinchik EM, Bultman SJ, Horsthemke B, Lee ST, Strunk KM, Spritz RA, Avidano KM, Jong MT & Nicholls RD (1993) A gene for the mouse pink-eyed dilution locus and for human type II oculocutaneous albinism. Nature 361: 72–76

    PubMed  Google Scholar 

  • Rosen BP & Borbolla MG (1984) A plasmid-encoded arsenite pump produces arsenite resistance inEscherichia coli. Biochem. Biophys. Res. Commun. 124: 760–765

    PubMed  Google Scholar 

  • Rosen BP, Weigel W, Karkaria CE & Gangola P (1988) Molecular characterization of an anion pump. ThearsA gene product is an arsenite(antimonate)-stimulated ATPase. J. Biol. Chem. 263: 3067–3070

    PubMed  Google Scholar 

  • Rosenstein R, Peschel P, Wieland B & Götz F (1992) Expression and regulation of theStaphylococcus xylosus antimonite, arsenite and arsenate resistance operon. J. Bacteriol. 174: 3676–3683

    PubMed  Google Scholar 

  • San Francisco MJD, Hope CL, Owolabi JB, Tisa LS & Rosen BP (1990) Identification of the metalloregulatory element of the plasmid-encoded arsenical resistance operon. Nucl. Acid. Res., 18: 619–624

    Google Scholar 

  • Silver S & Keach D (1982) Energy-dependent arsenate efflux: the mechanism of plasmid mediated resistance. Proc. Natl. Acad. Sci. USA 79: 6114–6118

    Google Scholar 

  • Tisa LS & Rosen BP (1991) Molecular characterization of an anion pump: the ArsB protein is the membrane anchor for the ArsA protein, J. Biol. Chem. 265: 190–194

    Google Scholar 

  • Wu JH, Tisa LS & Rosen BP (1992) Membrane topology of the ArsB protein, the membrane component of an anion-translocating ATPase. J. Biol. Chem. 267: 12570–12576

    PubMed  Google Scholar 

  • Wu JH & Rosen BP (1993) ThearsD gene encodes a secondtrans-acting regulatory protein of the plasmid-encoded arsenical resistance operon. Molec. Microbiol. 8: 615–623

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dou, D., Dey, S. & Rosen, B.P. A functional chimeric membrane subunit of an ion-translocating ATPase. Antonie van Leeuwenhoek 65, 359–368 (1994). https://doi.org/10.1007/BF00872219

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00872219

Key words

Navigation