Skip to main content
Log in

Methanogenesis in thermophilic biogas reactors

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Methanogenesis in thermophilic biogas reactors fed with different wastes is examined. The specific methanogenic activity with acetate or hydrogen as substrate reflected the organic loading of the specific reactor examined. Increasing the loading of thermophilic reactors stabilized the process as indicated by a lower concentration of volatile fatty acids in the effluent from the reactors. The specific methanogenic activity in a thermophilic pilot-plant biogas reactor fed with a mixture of cow and pig manure reflected the stability of the reactor. The numbers of methanogens counted by the most probable number (MPN) technique with acetate or hydrogen as substrate were further found to vary depending on the loading rate and the stability of the reactor. The numbers of methanogens counted with antibody probes in one of the reactor samples was 10 times lower for the hydrogen-utilizing methanogens compared to the counts using the MPN technique, indicating that other non-reacting methanogens were present. Methanogens that reacted with the probe againstMethanobacterium thermoautotrophicum were the most numerous in this reactor. For the acetate-utilizing methanogens, the numbers counted with the antibody probes were more than a factor of 10 higher than the numbers found by MPN. The majority of acetate utilizing methanogens in the reactor wereMethanosarcina spp. single cells, which is a difficult form of the organism to cultivatein vitro. No reactions were observed with antibody probes raised againstMethanothrix soehngenii orMethanothrix CALS-1 in any of the thermophilic biogas reactors examined. Studies using 2-14C-labeled acetate showed that at high concentrations (more than approx. 1 mM) acetate was metabolized via the aceticlastic pathway, transforming the methyl-group of acetate into methane. When the concentration of acetate was less than approx. 1 mM, most of the acetate was oxidized via a two-step mechanism (syntrophic acetate oxidation) involving one organism oxidizing acetate into hydrogen and carbon dioxide and a hydrogen-utilizing methanogen forming the products of the first microorganism into methane. In thermophilic biogas reactors, acetate oxidizing cultures occupied the niche ofMethanothrix species, aceticlastic methanogens which dominate at low acetate concentrations in mesophilic systems. Normally, thermophilic biogas reactors are operated at temperatures from 52 to 56° C. Experiments using biogas reactors fed with cow manure showed that the same biogas yield found at 55° C could be obtained at 61° C after a long adaptation period. However, propionate degradation was inhibited by increasing the temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahring BK, Alatriste-Mondragon F, Westermann P & Mah RA (1991) Effects of cations onMethanosarcina thermophila TM-1 growing on moderate concentrations of acetate: production of single cells. Appl. Microbiol. Biotechnol. 35: 686–689

    Google Scholar 

  • Ahring BK, Angelidaki I & Johansen K (1992) Anaerobic treatment of manure together with industrial waste. Water Sci. Tech. 25: 311–318

    Google Scholar 

  • Ahring BK, Schmidt JE, Winther-Nielsen M, Macario A & Conway de Macario E (1993) Effect of medium composition and sludge removal on the production, composition, and architecture of thermophilic (55° C) acetate-utilizing granules from an upflow anaerobic sludge blanket reactor. Appl. Environ. Microbiol. 59: 2538–2545

    Google Scholar 

  • Ahring BK (1994) Status on science and application of thermophilic anaerobic digestion. Proc. 7thIAWQ, Int. Symp. Anaerobic Digestion, Cape Town, South Africa, pp. 328–337

  • Ahring BK, Sandberg M & Angelidaki I (1994) Volatile fatty acids as indicators of process imbalance in anaerobic reactors. Appl. Microbiol. Biotechnol. — submitted for publication

  • Angelidaki I, Petersen SP & Ahring BK (1990) Effects of lipids on thermophilic anaerobic digestion and reduction of lipid inhibition upon addition of bentonite. Appl. Microbiol. Biotechnol. 33: 469–472.

    Google Scholar 

  • Angelidaki I & Ahring BK (1993) Effect of the clay mineral bentonite on ammonia inhibition of anaerobic thermophilic reactors degrading animal waste. Biodegradation 3: 409–414

    Google Scholar 

  • —— (1994) Anaerobic thermophilic digestion of manure at different ammonia loads: effect of temperature. Water Res. 28: 727–731

    Google Scholar 

  • Bendixen HJ (1994) Safeguards against pathogens in Danish biogas plants. Proc. 7thIAWQ Int. Symp. Anaerobic Digestion, Cape Town, South Africa, pp. 629–638

  • Buhr HO & Andrews JF (1977) The thermophilic anaerobic digestion process. Water Res. 11: 129–143

    Google Scholar 

  • Conway de Macario I, Macario AJL & Wolin MJ (1982) Specific antisera and immunological procedures for characterization of methanogenic bacteria. J. Bacteriol. 149: 320–328

    Google Scholar 

  • Mathrani IM, Johansen K & Ahring BK (1994) Experiences with thermophilic anaerobic digestion of manure, organic industrial and household waste at the large scale biogas plant in Vegger, Denmark. Proc. 7thIAWQ Int. Symp. Anaerobic Digestion, Cape Town, South Africa, pp. 365–374

  • Macario AJL & Conway de Macario E (1988) Quantitative immunologic analysis of the methanogenic flora of digestors reveals a considerable diversity. Appl. Environ. Microbiol. 54: 79–86

    Google Scholar 

  • Macario AJL, Visser FA, Lier JB van & Conway de Macario E (1991) Topography of methanogenic subpopulations in a microbial consortium. J. Gen. Microbiol. 137: 2179–2189

    Google Scholar 

  • Mah RA (1982) Methanogenesis and methanogenic partnership. Phil. Trans. R. Soc. Lond. B. 297: 599–616

    Google Scholar 

  • McCarty PL (1964) Anaerobic waste treatment fundamentals III. Public Works 95: 91–94

    Google Scholar 

  • Petersen SP & Ahring BK (1991) Acetate oxidation in a thermophilic anaerobic sewage sludge digestor: the importance of non-aceticlastic methanogenesis from acetate. FEMS Microbiol. Ecol. 86: 149–158

    Google Scholar 

  • Petersen SP & Ahring BK (1992) The influence of sulphate on substrate utilization in a thermophilic sewage sludge digestor. Appl. Microbiol. Biotechnol. 36: 805–809

    Google Scholar 

  • Rintala J & Ahring BK (1994) Thermophilic anaerobic digestion of source sorted solid waste: the effects of enzyme addition. Appl. Microbiol. Biotechnol. 40: 427–431

    Google Scholar 

  • Schmidt JE & Ahring BK (1992) Effect of magnesium on thermophilic acetate-degrading granules in UASB reactors. Enzyme Microbiol. Biotechnol. 15: 304–310

    Google Scholar 

  • Stams AJM, Grolle KCF, Frijters CTMJ & Lier JB van (1992) Enrichment of thermophilic propionate-oxidizing bacteria in syntrophy withMethanobacterium thermoautotrophicum orMethanobacterium thermoformicicum. Appl. Environ. Microbiol. 58: 346–352

    Google Scholar 

  • Sørensen AH, Winther-Nielsen M & Ahring BK (1991) Kinetics of lactate, acetate and propionate in unadapted and lactate-adapted thermophilic, anaerobic sewage sludge: the influence of adaptation of sludge for start-up of thermophilic UASB reactors. Appl. Microbiol. Biotechnol. 34: 823–827

    Google Scholar 

  • Sørensen AH & Ahring BK (1993) Measurements of the specific methanogenic activity of anaerobic digestor biomass. Appl. Microbiol. Biotechnol. 40: 427–431

    Google Scholar 

  • Tafdrup S (1994) Centralized biogas plants combine agricultural and environmental benefits with energy production. Proc. 7thIAWQ Int. Symp. Anaerobic Digestion, Cape Town, South Africa, pp. 460–468

  • Wiegant WM (1986) Thermophilic anaerobic digestion of waste and wastewater. Ph.D. Thesis, Wageningen Agric. Univ. Wageningen, The Netherlands

    Google Scholar 

  • Zinder SH & Koch M (1984) Non-aceticlastic methanogenesis from acetate: acetate oxidation by a thermophilic syntrophic coculture. Arch. Microbiol. 138: 263–272

    Google Scholar 

  • Zinder SH (1990) Conversion of acetic acid to methane by thermophiles. FEMS Microbiol. Rev. 75: 125–138

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahring, B.K. Methanogenesis in thermophilic biogas reactors. Antonie van Leeuwenhoek 67, 91–102 (1995). https://doi.org/10.1007/BF00872197

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00872197

Key words

Navigation