Antonie van Leeuwenhoek

, Volume 67, Issue 1, pp 47–77 | Cite as

Enhanced biodegradation of aromatic pollutants in cocultures of anaerobic and aerobic bacterial consortia

  • Jim A. Field
  • Alfons J. M. Stams
  • Mario Kato
  • Gosse Schraa


Toxic aromatic pollutants, concentrated in industrial wastes and contaminated sites, can potentially be eliminated by low cost bioremediation systems. Most commonly, the goal of these treatment systems is directed at providing optimum environmental conditions for the mineralization of the pollutants by naturally occurring microflora. Electrophilic aromatic pollutants with multiple chloro, nitro and azo groups have proven to be persistent to biodegradation by aerobic bacteria. These compounds are readily reduced by anaerobic consortia to lower chlorinated aromatics or aromatic amines but are not mineralized further. The reduction increases the susceptibility of the aromatic molecule for oxygenolytic attack. Sequencing anaerobic and aerobic biotreatment steps provide enhanced mineralization of many electrophilic aromatic pollutants. The combined activity of anaerobic and aerobic bacteria can also be obtained in a single treatment step if the bacteria are immobilized in particulate matrices (e.g. biofilm, soil aggregate, etc.). Due to the rapid uptake of oxygen by aerobes and facultative bacteria compared to the slow diffusion of oxygen, oxygen penetration into active biofilms seldom exceeds several hundred micrometers. The anaerobic microniches established inside the biofilms can be applied to the reduction of electron withdrawing functional groups in order to prepare recalcitrant aromatic compounds for further mineralization in the aerobic outer layer of the biofilm.

Aside from mineralization, polyhydroxylated and chlorinated phenols as well as nitroaromatics and aromatic amines are susceptible to polymerization in aerobic environments. Consequently, an alternative approach for bioremediation systems can be directed towards incorporating these aromatic pollutants into detoxified humic-like substances. The activation of aromatic pollutants for polymerization can potentially be encouraged by an anaerobic pretreatment step prior to oxidation. Anaerobic bacteria can modify aromatic pollutants by demethylating methoxy groups and reducing nitro groups. The resulting phenols and aromatic amines are readily polymerized in a subsequent aerobic step.

Key words

xenobiotics chloroaromatics nitroaromatics azo dyes aromatic amines recalcitrance bioremediation sequential-degradation synchronous-degradation mineralization polymerization oxygen tolerance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adriaens P & Grbic-Galic D (1992) Fate of highly chlorinated dibenzo-p-dioxins and dibenzofurans in anaerobic soils and sediments. In: DECHEMA Preprints Soil Decontamination Using Biological Processes, Karlsruhe (pp. 79–82)Google Scholar
  2. Adriaens P, Kohler HPE, Kohler-Staub D & Focht DD (1989) Bacterial dehalogenation of chlorobenzoates and coculture biodegradation of 4,4'-dichlorobiphenyl. Appl. Environ. Microbiol. 55: 887–892Google Scholar
  3. Alder AC, Haggblom MM, Oppenheimer SR & Young LY (1993) Reductive dechlorination of polychlorinated biphenyls in anaerobic sediments. Environ. Sci. Technol. 27: 530–538Google Scholar
  4. Allard AS, Hynning PA, Lindgren C, Remberger M & Neilson AH (1991) Dechlorination of chlorocatechols by stable enrichment cultures of anaerobic bacteria. Appl. Environ. Microbiol. 57: 77–84Google Scholar
  5. Anid PJ, Nies L & Vogel TM (1991) Sequential anaerobic-aerobic biodegradation of PCBs in the river model. In: Hinchee RE & Olfenbttel RF (Eds) On-Site Bioreclamation: Processes of Xenobiotic and Hydrocarbon Treatment (pp. 428–436). Butterworth-Heinemann, BostonGoogle Scholar
  6. Aronstein BN & Alexander M (1993) Effect of a non-ionic surfactant added to the soil surface on the biodegradation of aromatic hydrocarbons within the soil. Appl. Microbiol. Biotechnol. 39: 386–390Google Scholar
  7. Asplund G & Grimvall A (1991) Organohalogens in nature — more widespread than previously assumed. Environ. Sci. Technol. 25: 1346–1350Google Scholar
  8. Bartha R, Linke HAB & Pramer D (1968) Pesticide transformations: Production of chloroazobenzenes from chloroanilines. Science 161: 582–583Google Scholar
  9. Battersby NS & Wilson V (1989) Survey of the anaerobic biodegradation potential of organic chemicals in digesting sludge. Appl. Environ. Microbiol. 55: 443–439Google Scholar
  10. Battersby NS, Malcolm SJ, Brown CM & Stanley SO (1985) Sulphate reduction in oxic and sub-oxic North-East Atlantic sediments. FEMS Microbiol. Ecol. 31: 225–228Google Scholar
  11. Bedard DL, Wagner RE, Brennan MJ, Haberl ML & Brown-Jr JF (1987) Extensive degradation of aroclors and environmentally transformed polychlorinated biphenyls byAlcaligens eutrophs H850. Appl. Environ. Microbiol. 53: 1094–1102Google Scholar
  12. Beller HR, Grbic-Galic D & Reinhard M (1992) Microbial degradation of toluene under sulfate-reducing conditions and the influence of iron on the process. Appl. Environ. Microbiol. 58: 786–793Google Scholar
  13. Berry DF & Boyd SA (1985) Decontamination of soil through enhanced formation of bound residues. Environ. Sci. Technol. 19: 1132–1133Google Scholar
  14. Beunick J & Rehm HJ (1988) Synchronous anaerobic and aerobic degradation of DDT by an immobilized mixed culture system. Appl. Microbiol. Biotechnol. 29: 72–80Google Scholar
  15. Beunink J & Rehm HJ (1990) Coupled reductive and oxidative degradation of 4-chloro-2-nitrophenol by a co-immobilized mixed culture system. Appl. Microbiol. Biotechnol. 34: 108–115Google Scholar
  16. Bollag JM & Kaiser JP (1991) The transformation of heterocyclic aromatic compounds and their derivatives under anaerobic conditions. Critical Rev. Environ. Control 21(3/4): 297–329Google Scholar
  17. Bollag JM, Sjoblad RD & Minard RD (1977) Polymerization of phenolic intermediates of pesticides by a fungal enzyme. Experientia 33: 1564–1566Google Scholar
  18. Bollag JM, Minard RD & Liu SY (1983) Cross-linkage between anilines and phenolic humus constituents. Environ. Sci. Technol. 17: 72–80Google Scholar
  19. Bollag JM, Chen CM, Sarkar JM & Loll MJ (1987) Extraction and purification of peroxidase from soil. Soil Biol. Biochem. 19: 61–67Google Scholar
  20. Bollag JM, Shuttleworth KL & Anderson DH (1988) Laccase — mediated detoxification of phenolic compounds. Appl. Environ. Microbiol. 54: 3086–3091Google Scholar
  21. Boopathy R, Wilson M & Kulpa CF (1993) Anaerobic removal of 2,4,6-trinitrotoluene (TNT) under different electron accepting conditions: laboratory study. Water Environ. Res. 65: 271–75Google Scholar
  22. Bosma TNP, van der Meer JR, Schraa G, Tros ME & Zehnder AJB (1988) Reductive dechlorination of all trichloro-and dichlorobenzene isomers. FEMS Microbiol. Ecol. 53: 223–229Google Scholar
  23. Bosma TNP, W Ballemans MEM, Hoekstra NK, te-Welscher RAG, Smeenk JGMM, Schraa G & Zehnder AJB (1994) Biotransformation of organic contaminants in sediment columns and a dune infiltration area. Groundwater (in press)Google Scholar
  24. Boyd SA, Shelton DR, Berry D & Tiedje JM (1983) Anaerobic biodegradation of phenolic compounds in digested sludge. Appl. Environ. Microbiol. 46: 50–54Google Scholar
  25. Boyd SA & Shelton RD (1984) Anaerobic biodegradation of chlorophenols in fresh and acclimated sludge. Appl. Environ. Microbiol. 47: 272–277Google Scholar
  26. Boyle AW, Blake CK, Price-II WA & May HD (1993) Effects of polychlorinated biphenyl congener concentration and sediment supplementation on rates of methanogenesis and 2,3,6-trichlorobiphenyl dechlorination in an anaerobic enrichment. Appl. Environ. Microbiol. 59: 3027–3031Google Scholar
  27. Briglia M, Middeldorp PJM & Salkinoja-Salonen MS (1994) Mineralization performance ofRhodococcus chlorophenolicus strain PCP-1 in contaminated soil simulating on site conditions. Soil Biol. Biochem. 26: 377–385Google Scholar
  28. Brown D & Hamburger B (1987) The degradation of dyestuffs: Part III, investigations of their ultimate degradability. Chemosphere 16: 1539–1553Google Scholar
  29. Brown D & Laboureur P (1983a) The degradation of dyestuffs: Part I primary biodegradation under anaerobic conditions. Chemosphere 12: 397–404Google Scholar
  30. Brown D & Laboureur P (1983b) The aerobic biodegradability of primary aromatic amines. Chemosphere 12: 405–414Google Scholar
  31. Cain RB (1992) Microbial degradation of synthetic polymers. In: Fry JC, Gadd GM, Herbert RA, Jones CW & Watson-Craik IA (Eds) Microbial Control of Pollution, Society for General Microbiology, Symposium 48 (pp. 293–338). Univ. Cambridge Press, CambridgeGoogle Scholar
  32. Carliell CM, Godefroy SJ, Naidoo N, Buckley CA, Senior E, Mulholland D & Martineigh BS (1994) Anaerobic decolourisation of azo dyes. In: Proceedings of the Seventh International Symposium on Anaerobic Digestion, Cape Town, South Africa (pp. 303–306)Google Scholar
  33. Carpenter DF, McCormick NG, Cornell JH & Kaplan AM (1978) Microbial transformation of 14C-labeled 2,4,6-trinitrotoluene in an activated-sludge system. Appl. Environ. Microbiol. 35: 949–954Google Scholar
  34. Castro TF & Toshida T (1971) Degradation of organochlorine insecticides in flooded soils in the Philippines. J. Agric. Food. Chem. 19: 1168–1170Google Scholar
  35. Chang CW & Bumpus JA (1993) Oligomers of 4-chloroniline are intermediates formed during its biodegradation byPhanerochaete chrysosporium. FEMS Microbiol. Lett. 107: 337–342Google Scholar
  36. Chen W, Supanwong K, Ohmiya K, Shimizu S & Kawakami H (1985) Anaerobic degradation of veratrylglycerol-beta-guaiacyl ether and guaiacoxyacetic acid by mixed rumen bacteria. Appl. Environ. Microbiol. 50: 1451–1456Google Scholar
  37. Cheng HH, Haider K & Harper SS (1983) Catechol and chlorocatechols in soil: degradation and extractability. Soil Biol. Biochem. 15: 311–317Google Scholar
  38. Claus H & Filip Z (1990) Enzymatic oxidation of some phenols and aromatic amines, and the behaviour of some phenoloxidases in the presence of soil related adsorbents. Wat. Sci. Tech. 22(6): 66–77Google Scholar
  39. Colberg PJ & Young LY (1985) Anaerobic degradation of soluble fractions of (14C-lignin)lignocellulose. Appl. Environ. Microbiol. 49: 345–349Google Scholar
  40. Cozza CL & Woods SL (1992) Reductive dechlorination pathways for substituted benzenes: a correlation with electronic properties. Biodegradation 2: 265–278Google Scholar
  41. Crawford RL (1993) Biotreatment of nitroaromatic compounds. TIBTECH 11: 411–412Google Scholar
  42. Cussler EL (1992) Diffusion, Mass Transfer in Fluid Systems. Cambridge University Press, New YorkGoogle Scholar
  43. Cypionka H, Widdel F & Pfennig N (1985) Survival of sulfatereducing bacteria after oxygen stress, and growth in sulfate-free oxygen-sulfide gradients. FEMS Microbiol. Ecol. 31: 39–45Google Scholar
  44. Dahlman O, Morck R, Ljundquist P, Relman A, Johansson C, Boren H & Grimvall A (1993) Chlorinated structural elements in high molecular weight organic matter from unpolluted waters and bleached-kraft mill effluents. Environ. Sci. Technol. 27: 1616–1620Google Scholar
  45. Das N (1969) Studies on flavanoid metabolism. Degradation of (+)-catechin by rat intestinal contents. Biochim. Biophys. Acta 177: 668–670Google Scholar
  46. De MA, O'Connor OA & Kosson DS (1994) Metabolism of aniline under different anaerobic electron-accepting and nutritional conditions. Environ. Toxicol. Chem. 13: 233–239Google Scholar
  47. De Beer D (1990) Microelectrode studies in biofilms and sediments. Ph.D. Thesis, Universiteit van Amsterdam, Amsterdam, The NetherlandsGoogle Scholar
  48. Dec J & Bollag JM (1988) Microbial release and degradation of catechol and chlorophenols bound to synthetic humus. Soil Sci. Soc. Am. J. 52: 1366–1371Google Scholar
  49. De Jong E, Field JA, Spinnler HE, Wijnberg JBPA & de Bont JAM (1994) Significant biogenesis of chlorinated aromatics by fungi in natural environments. Appl. Environ. Microbiol. 60: 264–270Google Scholar
  50. Dickel O, Haug W & Knackmuss HJ (1993) Biodegradation of nitrobenzene by a sequential anaerobic-aerobic process. Biodegradation 4: 187–194Google Scholar
  51. Dolfing J & Harrison BK (1993) Redox and reduction potentials as parameters to predict the degradation pathway of chlorinated benzenes in anaerobic environments. FEMS Microbiol. Ecol. 13: 23–30Google Scholar
  52. Dorn E & Knackmuss HJ (1978) Chemical structure and biodegradability of halogenated aromatic compounds: Substituent effects of 1,2-dioxygenation of catechol. Biochem. J. 174: 85–94Google Scholar
  53. Dubin P & Wright L (1975) Reduction of azo food dyes in cultures of Proteus vulgaris. Xenobiotica 5: 563–571Google Scholar
  54. Edwards EA & Grbic-Galic DJ (1994) Anaerobic degradation of toluene and o-xylene by a methanogenic consortium. Appl. Environ. Microbiol. 60: 313–322Google Scholar
  55. Edwards EA, Wills LE, Reinhard M & Grbic-Galic DJ (1992) Anaerobic degradation of toluene and xylene by aquifer microorganisms under sulfate-reducing conditions. Appl. Environ. Microbiol. 58: 794–800Google Scholar
  56. Edwards EA, Edwards AM & Grbic-Galic DJ (1994) A method for detection of aromatic metabolites at very low concentrations: Application to detection of metabolites of anaerobic toluene degradation. Appl. Environ. Microbiol. 60: 323–327Google Scholar
  57. Evans WC & Fuchs G (1988) Anaerobic degradation of aromatic compounds. Ann. Rev. Microbiol. 42: 289–317Google Scholar
  58. Evans PJ, Dzung TM, Kim KS & Young LY (1991) Anaerobic degradation of toluene by a denitrifying bacterium. Appl. Environ. Microbiol. 57: 1139–1145Google Scholar
  59. Fahmy MK (1992) Treatment of sulphite pulp bleaching effluents in anaerobic/aerobic fluidized biofilm reactors Ph.D. Dissertation, Swiss Federal Institute of Technology, ZurichGoogle Scholar
  60. Fathepure BZ & Vogel TM (1991) Complete degradation of polychlorinated hydrocarbons by a two-stage biofilm reactor. Appl. Environ. Microbiol. 57: 3418–3422Google Scholar
  61. Fee JA (1982) Is superoxide important in oxygen poisoning? Trends Biochem. Sci. 7: 84–86 Ferguson JF (1994) Anaerobic and aerobic treatment for AOX removal. Wat. Sci. Tech. (in press)Google Scholar
  62. Ferguson TJ & Mah R (1983) Isolation and characterization of an H2-oxidizing thermophilic methanogen. Appl. Environ. Microbiol. 45: 265–274Google Scholar
  63. Fetzer S & Conrad R (1993) Effect of redox potential on methanogenesis by Methanosarcina barkeri. Arch. Microbiol. 160: 108–113Google Scholar
  64. Fetzer S, Bak F & Conrad R (1993) Sensitivity of methanogenic bacteria from paddy soil to oxygen and desiccation. FEMS Microbiol. Ecol. 12: 107–115Google Scholar
  65. Field JA & Lettinga G (1987) The methanogenic toxicity and anaerobic degradability of a hydrolyzable tannin. Wat. Res. 21: 367–374Google Scholar
  66. Field JA & Lettinga G (1989) The effect of oxidative coloration on the methanogenic toxicity and anaerobic biodegradability of phenols. Biological Wastes 29: 161–179Google Scholar
  67. Field JA & Lettinga G (1991) Treatment and detoxification of aqueous spruce bark extracts by Aspergillus niger. Wat. Sci. Tech. 24 (3/4): 127–137Google Scholar
  68. Field JA & Lettinga G (1992) Biodegradation of tannins. In: Sigel H (Ed) Metal Ions in Biological Systems. Volume 28: Degradation of Environmental Pollutants by Microorganisms and their Metalloenzymes (pp. 61–97). Marcel Dekker, Inc., New YorkGoogle Scholar
  69. Field JA, Kortekaas S & Lettinga G (1989) The tannin theory of methanogenic toxicity. Biological Wastes 29: 241–262Google Scholar
  70. Field JA, Lettinga G & Habets LHA (1990) Oxidative detoxification of aqueous bark extracts. Part I: autoxidation. J. Chem. Technol. Biotechnol. 49: 15–33Google Scholar
  71. Fitzsimons R, Ek M & Eriksson KEL (1990) Anaerobic dechlorination/degradation of chlorinated organic compounds of different molecular masses in bleach plant effluents. Environ. Sci. Technol. 24: 1744–1748Google Scholar
  72. Fogel S, Lancione RL & Sewall AE (1982) Enhanced biodegradation of methoxychlor in soil under sequential environmental conditions. Appl. Environ. Microbiol. 44: 113–120Google Scholar
  73. Fredete V, Plante C & Roy A (1967) Numerical data concerning the sensitivity of anaerobic bacteria to oxygen. J. Bacteriol. 94: 2012–2017Google Scholar
  74. Freitag D, Scheunert I, Klein W & Korte F (1984) Long-term fate of 4-chloroaniline-14C in soil and plants under outdoor conditions. A contribution to terrestrial ecotoxicology of chemicals. J. Agric. Food Chem. 32: 203–207Google Scholar
  75. Fuchs G, Mohamed MES, Altenschmidt U, Koch J, Lack A, Brackmann R, Lochmeyer C & Oswald B (1994) Biochemistry of anaerobic biodegradation of aromatic compounds. In: Ratledge C (Ed) Biochemistry of Microbial Degradation (pp. 513–553). Kluwer Academic Publ., DordrechtGoogle Scholar
  76. Funk SB, Roberts DJ, Crawford DL & Crawford RL (1993) Initialphase optimization for bioremediation of munition compound-contaminated soils. Appl. Environ. Microbiol. 59: 2171–77Google Scholar
  77. Furukawa K, Tomizuka N & Kamibayashi A (1981) Metabolic breakdown of Kaneclors (Polychlorobiphenyls) and their products by Acinebacter sp. Appl. Environ. Microbiol. 46: 140–145Google Scholar
  78. Geankoplis CJ (1983) Transport Processes and Unit Operations. Prentice Hall, New Jersey, USAGoogle Scholar
  79. Gerritse J & Gottschal JC (1992) Mineralization of the herbicide 2,3,6-trichlorobenzoic acid by a co-culture of anaerobic and aerobic bacteria. FEMS Microbiol. Ecol. 101: 89–98Google Scholar
  80. Gerritse J & Gottschal JC (1993) Two-membered mixed cultures of methanogenic and aerobic bacteria in O2-limited chemostats. J. Gen. Microbiol. 139: 1853–1860Google Scholar
  81. Gerritse J, Schut F & Gottschal JC (1990) Mixed chemostat cultures of obligately aerobic and fermentative or methanogenic bacteria grown under oxygen-limiting conditions. FEMS Microbiol. Lett. 66: 87–94Google Scholar
  82. Gibson SA & Sulfita JM (1990) Anaerobic biodegradation of 2,4,5-trichlorophenoxyacetic acid in samples from a methanogenic aquifer: Stimulation by short-chain organic acids and alcohols. Appl. Environ. Microbiol. 56: 1825–1832Google Scholar
  83. Glaesser A, Liebelt U & Hempel DC (1992) Design of a two-stage process for total degradation of azo dyes. DECHEMA Biotechnol. Conf. 5B: 1085–1088Google Scholar
  84. Gorontzy T, Kuver J & Blotevogel KH (1993) Microbial transformation of nitroaromatic compounds under anaerobic conditions. J. Gen. Microbiol. 139: 1331–1336Google Scholar
  85. Gottschalk G & Peinemann S (1992) The anaerobic way of life. In: Balows A, Trüper HG, Dworkin M, Harder W & Schleifer KH (Eds) The Prokaryotes (pp. 300–311). Springer-Verlag, New YorkGoogle Scholar
  86. Grbic-Galic D (1990) Anaerobic microbial transformation of nonoxygenated aromatic and alicyclic compounds in soil, subsurface and freshwater sediments. In: Bollag JM & Stotzky G (Eds) Soil Biochemistry Volume 6 (pp. 117–189). Marcel Dekker, New YorkGoogle Scholar
  87. Gribble GW (1992) Naturally occurring organohalogen compounds — a survey. J. Nat. Prod. (Lloydia) 55: 1353–1395Google Scholar
  88. Groenewegen PEJ, van den Tweel WJJ & de Bont JAM (1992) Anaerobic bioformation of 4-hydroxybenzoate from 4-chlorobenzoate by the coryneform bacterium NTB-1. Appl. Microbiol. Biotechnol. 36: 541–547Google Scholar
  89. Groenewegen PEJ & de Bont JAM (1992) Degradation of 4-nitrobenzoate via 4-hydroxylaminobenzoate and 3,4-dihydroxybenzoate inComamonas acidovorans NBA-10. Arch. Microbiol. 158: 381–386Google Scholar
  90. Guenzi WD & Beard WE (1968) Anaerobic conversion of DDT to DDD and aerobic stability of DDT in soil. Soil Sci. Soc. Amer. Proc. 32: 522–524Google Scholar
  91. Haggblom MM (1992) Microbial breakdown of halogenated aromatic pesticides and related compounds. FEMS Microbiol. Rev. 103: 29–72Google Scholar
  92. Haggblom M & Salkinoja-Salonen M (1991) Biodegradability of chlorinated organic compounds in pulp bleaching effluents. Water Sci. Technol. (1991) 24(3–4): 161–170Google Scholar
  93. Haggblom MM, Berman MH, Frazer AC & Young LY (1993) Anaerobic o-demethylation of chlorinated guaiacols by Acetobacterium woodii and Eubacterium limosum. Biodegradation 4: 107–114Google Scholar
  94. Hakulinen R & Salkinoja-Salonen (1982) Treatment of pulp and paper industry wastewaters in an anaerobic fluidised bed reactor. Process Biochem. 17 (March–April): 18–22Google Scholar
  95. Hallas LE & Alexander M (1983) Microbial transformation of nitroaromatic compounds in sewage effluent. Appl. Environ. Microbiol. 45: 1234–1241Google Scholar
  96. Hatcher PG, Bortiatynski JM, Minard R, Dec J & J-Bollag M (1993) Use of high resolution 13CNMR to examine the enzymatic covalent binding of 13C-labeled 2,4-dichlorophenol to humic substances. Environ. Sci. Technol. 27: 2098–2103Google Scholar
  97. Haug W, Schmidt A, Noertemann B, Hempel DC, Stolz A & Knackmuss HJ (1991) Mineralization of the sulfonated azo dye Mordant-Yellow-3 by a 6-aminonaphthalene-2-sulfonate degrading bacterial consortium. Appl. Environ. Microbiol. 57: 3144–3149Google Scholar
  98. Hendriksen HV & Ahring BK (1993) Anaerobic dechlorination of pentachlorophenol in fixed-film and upflow anaerobic sludge blanket reactor using different inocula. Biodegradation 3: 399–408Google Scholar
  99. Hodin F, Boreén H, Grimvall A & Karlsson S (1991) Formation of chlorophenols and related compounds in natural and technical chlorination processes. Wat. Sci. Tech. 3/4: 403–410Google Scholar
  100. Holliger C, Schraa G, Stams AJM & Zehnder AJB (1992) Enrichment and properties of an anaerobic mixed culture reductively dechlorinating 1,2,3-trichlorobenzene to 1,3-dichlorobenzene. Appl. Environ. Microbiol. 58: 1636–1644Google Scholar
  101. Hooijmans CM (1990) Diffusion coupled with bioconversion in immobilized systems. Ph.D. Thesis, Technische Universiteit, Delft, The NetherlandsGoogle Scholar
  102. Horowitz A, Shelton DR, Cornell CP & Tiedje JM (1981) Anaerobic degradation of aromatic compounds in sediments and digested sludge. Dev. Ind. Microbiol. 23: 435–444Google Scholar
  103. Hrudey SE, Knettig E, Daignault SA & Fedorak PM (1987) Anaerobic biodegradation of monochlorophenols. Environ. Technol. Lett 8: 65–76Google Scholar
  104. Hungate RE (1969) A roll tube method for cultivation of strict anaerobes. In: Norris JB & Ribbons DW (Eds) Methods in Microbiology, Vol. 3B (pp. 117–132). Academic Press, New YorkGoogle Scholar
  105. Huser BA, Wuhrmann K & Zehnder AJB (1982)Methanothrix soehngenii gen. nov. sp. nov., a new acetotrophic non hydrogen oxidizing methane bacterium. Arch. Microbiol. 132: 1–9Google Scholar
  106. Hutchins SR (1993) Biotransformation and mineralization of alkylbenzenes under denitrifying conditions. Environ. Toxicol. Chem. 12: 1413–1423Google Scholar
  107. Hutzinger O & Veerkamp W (1981) Xenobiotic chemicals with pollution potential. In: Leisinger T, Hutter R, Cook AM & Nuesch J (Eds) Microbial Degradation of Xenobiotic and Recalcitrant Compounds (pp. 3–45). Academic Press, LondonGoogle Scholar
  108. Jianrong Z, Yanru Y, Huren A & Yi Q (1994) A study of dyewaste treatment using anaerobic-aerobic process. In: Proceedings of the Seventh International Symposium of Anaerobic Digestion, Cape Town, South Africa (pp. 360–363)Google Scholar
  109. Jokela JJ, Pellinen J & Salkinoja-Salonen M (1987) Initial steps in the pathway for bacterial degradation of two tetrametric lignin model compounds. Appl. Environ. Microbiol. 53: 2642–2649Google Scholar
  110. Jokela JJ, Laine M, Ek M & Salkinoja-Salonen M (1993) Effect of biological treatment on halogenated organics in bleached kraft pulp mill effluents studied by molecular weight distribution analysis. Environ. Sci. Technol. 27: 547–557Google Scholar
  111. Joshi DK & Gold MH (1993) Degradation of 2,4,5-trichlorophenol by the lignin-degrading basidiomycetePhanerochaete chrysosporium. Appl. Environ. Microbiol. 59: 1779–1785Google Scholar
  112. Jurgensen BB (1977) Bacterial sulfate reduction within reduced microniches of oxidized marine sediments. Mar. Biol. 41: 7–17Google Scholar
  113. Kaake RH, Roberts DJ, Stevens TO, Crawford RL & Crawford DL (1992) Bioremediation of soils contaminated with the herbicide 2-sec-butyl-4,6-dinitrophenol (dinoseb). Appl. Environ. Microbiol. 58: 1683–1689Google Scholar
  114. Kafkewitz D, Armenante PM, Lewandowski G & Kung CM (1992) Dehalogenation and mineralization of 2,4,6-trichlorophenol by the sequential activity of anaerobic and aerobic microbial populations. Biotechnol. Lett. 14: 143–148Google Scholar
  115. Kaiser JP & Hanselmann KW (1982) Fermentative metabolism of substituted monoaromatic compounds by a bacterial community from anaerobic sediments. Arch. Microbiol. 133: 185–194Google Scholar
  116. Kaplan DL & Kaplan AM (1982) Thermophilic biotransformations of 2,4,6-trinitrotoluene under simulated composting conditions. Appl. Environ. Microbiol. 44: 757–760Google Scholar
  117. Kato M, Field JA & Lettinga G (1993a) Methanogenesis in granular sludge exposed to oxygen. FEMS Microbiol. Lett. 114: 317–324Google Scholar
  118. Kato M, Field JA & Lettinga G (1993b) The high tolerance of methanogens in granular sludge to oxygen. Biotechnol. Bioengineer 42: 1360–1366Google Scholar
  119. Kiener A & Leisinger T (1983) Oxygen sensitivity of methanogenic bacteria. Syst. Appl. Microbiol. 4: 305–312Google Scholar
  120. Kirby TW, Lancaster-Jr JR & Fridovich I (1981) Isolation and characterization of the iron-containing superoxide dismutase of Methanobacterium bryantii. Arch. Biochem. Biophysics 210: 140–148Google Scholar
  121. Kirk TK & Farrell RL (1987) Enzymatic ‘combustion’: The microbial degradation of lignin. Ann. Rev. Microbiol. 41: 465–505Google Scholar
  122. Klibanov AM & Morris ED (1981) Horseradish peroxidase for the removal of carcinogenic aromatic amines from water. Enzyme Microb. Technol. 3: 119–122Google Scholar
  123. Klibanov AM, Alberti BN, Morris ED & Felshin LM (1980) Enzymatic removal of toxic phenols and anilines from waste waters. J. Appl. Biochem. 2: 414–421Google Scholar
  124. Knackmuss HJ (1992) Potentials and limitations of microbes to degrade xenobiotics. In: DECHEMA Preprints Soil Decontamination Using Biological Processes, 6–9 December, 1992, Karlsruhe (pp. 3–9)Google Scholar
  125. Knackmuss HJ (1981) Degradation of halogenated and sulfonated hydrocarbons. In: Leisinger T, Hutter R, Cook AM & Nuesch J (Eds) Microbial Degradation of Xenobiotic and Recalcitrant Compounds (pp. 189–212). Academic Press, LondonGoogle Scholar
  126. Koch J & Fuchs G (1992) Enzymatic reduction of benzoyl-CoA to alicyclic compounds, a key reaction in anaerobic aromatic metabolism. Eur J Biochem 205: 195–202Google Scholar
  127. Kulla HG (1981) Aerobic bacterial degradation of azo dyes. In: Leisinger T, Hutter R, Cook AM & Nuesch J (Eds) Microbial Degradation of Xenobiotics and Recalcitrant Compounds (pp. 387–398). Academic Press, LondonGoogle Scholar
  128. Lack A & Fuchs G (1994) Evidence that phenol phosphorylation to phenylphosphate is the first step in anaerobic phenol metabolism in a denitrifyingPseudomonas sp. Arch Microbiol 161: 132–139Google Scholar
  129. LaFond RA & Ferguson JF (1991) Anaerobic and aerobic treatment processes for removal of chlorinated organics from kraft bleaching wastes. In: Proceedings TAPPI Environmental Conference, San Antonio, Texas, April 7–10, 1991, TAPPI Press, Atlanta, GA (pp. 797–805)Google Scholar
  130. Lamar TL, Glaser JA & Kirk TK (1990) Fate of pentachlorophenol (PCP) in sterile soils inoculated with the white-rot basidiomycete Phanerochaete chrysosporium: mineralization, volatilization and depletion of PCP. Soil Biol. Biochem 22: 433–440Google Scholar
  131. Leuenberger C, Giger W, Coney R, Graydon JW & Molnar-Kubica E (1985) Persistent chemicals in pulp mill effluents: Occurrence and behaviour in an activated sludge treatment plant. Wat. Res. 19: 885–894Google Scholar
  132. Liu D, Thomson K & Anderson AC (1984) Identification of nitroso compounds from biotransformation of 2,4-dintrotoluene. Appl. Environ. Microbiol. 47: 1295–1298Google Scholar
  133. Liu S & Sulfita JM (1993) Ecology and evolution of microbial populations for bioremediation. TIBTECH 11: 344–352Google Scholar
  134. Loesche WJ (1969) Oxygen sensitivity of various anaerobic bacteria. Appl. Microbiol. 18: 723–727 Lyr H (1963) Enzymatische detoxifikation chlorieter phenole. Phytophatol. Z. 47: 73–83Google Scholar
  135. Madsen T & Aamand J (1991) Effects of sulfuroxy anions on degradation of pentachlorophenol by a methanogenic enrichment culture. Appl. Environ. Microbiol. 57: 2453–2458Google Scholar
  136. Malaney GW (1960) Oxidative abilities of aniline-acclimated activated sludge. JWPFC 32: 1300–1311Google Scholar
  137. Maloney SW, Manem J, Mallevialle J & Flessinger F (1986) Transformation of trace organic compounds in drinking water by enzymatic oxidative coupling. Environ. Sci. Technol. 20: 249–253Google Scholar
  138. Marinucci AC & Bartha R (1979) Biodegradation of 1,2,3- and 1,2,4-trichlorobenzene in soil and in liquid enrichment cultures. Appl. Environ. Microbiol. 38: 811–817Google Scholar
  139. Marschall C, Frenzel P & Cypionka H (1993) Influence of oxygen on sulfate reduction and growth of sulfate-reducing bacteria. Arch. Microbiol. 159: 168–173Google Scholar
  140. Martin JH & Savage DC (1988) Degradation of DNA in cells and extracts of the obligately anaerobic bacteriumRoseburia cecicola upon exposure to air. Appl. Environ. Microbiol. 54: 1619–1621Google Scholar
  141. Marvin-Sikkema FD & de Bont JAM (1994) Degradation of nitroaromatic compounds by microorganisms. Appl. Microbiol. Biotechnol. (in press)Google Scholar
  142. Mavoungou R, Masse R & Sylvestre M (1991) Microbial dehalogenation of 4,4′-dichlorobiphenyl under anaerobic conditions. Sci. Total Environ. 101: 263–68Google Scholar
  143. Mazumder TK, Nishio N, Fukuzaki S & Nagai S (1987) Production of extracellular vitamin B-12 compounds from methanol byMethanosarcina barkeri. Appl. Microbiol. Biotechnol. 26: 511–516Google Scholar
  144. McCormick NG, Feeherry FE & Levinson HS (1976) Microbial transformation of 2,4,6-trinitrotoluene and other nitroaromatic compounds. Appl. Environ. Microbiol. 31: 949–958Google Scholar
  145. McCormick NG, Cornell JH & Kaplan AM (1978) Identification of biotransformation products from 2,4-dinitrotoluene. Appl. Environ. Microbiol. 35: 945–948Google Scholar
  146. Means JC, Wood SG, Hassett JJ & Banwart WJ (1980) Sorption of polynuclear aromatic hydrocarbons by sediments and soils. Environ. Sci. Technol. 14: 1525–1528Google Scholar
  147. Mechsner K & Wuhrmann K (1982) Cell permeability as a rate limiting factor in the microbial reduction of sulfonated azo dyes. Europ. J. Appl. Microbiol. Biotechnol. 15: 123–126Google Scholar
  148. Meyer U (1981) Biodegradation of synthetic organic colorants. In: Leisinger T, Hutter R, Cook AM & Nuesch J (Eds) Microbial Degradation of Xenobiotics and Recalcitrant Compounds (pp. 371–385). Academic Press, LondonGoogle Scholar
  149. Mihelcic JR & Luthy RG (1988a) Degradation of polycyclic aromatic hydrocarbon compounds under various redox conditions in soil-water systems. Appl. Environ. Microbiol. 54: 1182–1187Google Scholar
  150. Mihelcic JR & Luthy RG (1988b) Microbial degradation of acenaphthene and naphthalene under denitrification conditions in soil-water systems. Appl. Environ. Microbiol. 54: 1188–1198Google Scholar
  151. Mikesell MD & Boyd SA (1986) Complete reductive dechlorination and mineralization of pentachlorophenol by anaerobic microorganisms. Appl. Environ. Microbiol. 52: 861–865Google Scholar
  152. Mikesell MD & Boyd SA (1988) Enhancement of pentachlorophenol degradation in soil through induced anaerobiosis and bioaugmentation with anaerobic sewage sludge. Environ. Sci. Technol. 22: 1411–1414Google Scholar
  153. Mohn WW & Kennedy KJ (1992) Limited degradation of chlorophenols by anaerobic sludge granules. Appl. Environ. Microbiol. 58: 2131–2136Google Scholar
  154. Mohn WW & Tiedje JM (1992) Microbial reductive dehalogenation. Microbiol. Rev. 56: 482–507Google Scholar
  155. Morris JG (1979) Nature of oxygen toxicity in anaerobic microorganisms. In: Shilo M (Ed) Strategies of Microbial Life in Extreme Environments (pp. 149–162). Verlag Chemie, WeinheimGoogle Scholar
  156. Neilson AH, Allard AS, Lindgren C & Remberger M (1987) Transformation of chloroguaiacols, chloroveratroles and chlorocatechols by stable consortia of anaerobic bacteria. Appl. Environ. Microbiol. 53: 2511–2519Google Scholar
  157. Neumann A, Scholz-Muramatsu H & Diekert G (1994) Tetrachloroethene dechlorination to cis-1,2-dichloroethene in cell suspensions and cell extracts ofDehalosprillium multivorans, spec. nov. In: Bioengineering Sonderausgabe zur Gemeinsamen Fruhjahrstagung der VAAM und DGHM, 7–9 March, 1994, Hannover (pp. 82).Google Scholar
  158. Noyola A & Moreno G (1994) Granule production from raw waste activated sludge. In: Proceedings of the Seventh International Symposium on Anaerobic Digestion, Cape Town, South Africa (pp. 765–774)Google Scholar
  159. Oberbremer A, Müller-Hurtig R & Wagner F (1990) Effect of the addition of microbial surfactants on hydrocarbon degradation in a soil population in a stirred reactor. Appl. Microbiol. Biotechnol. 32: 485–489Google Scholar
  160. Oberg LG, Glas B, Swanson SE, Rappe C & Paul KG (1990) Peroxidase catalyzed oxidation of chlorophenols to polychlorinated dibenzo-p-dioxins and dibenzofurans. Arch. Environ. Contam. Toxicol. 19: 930–938Google Scholar
  161. O'Brien RW & Morris JG (1971) Oxygen and the growth and metabolism ofClostridium acetobutylicum. J. Gen. Microbiol. 68: 307–318Google Scholar
  162. O'Connor OA & Young LY (1993) Effect of nitrogen limitation on the biodegradability and toxicity of nitro- and aminophenol isomers to methanogenesis. Arch. Environ. Contam. Toxicol. 25: 285–291Google Scholar
  163. Okey RW & Bogan RH (1965) Apparent involvement of electron mechanisms in limiting metabolism of pesticides. JWPCF 37(5): 692–712Google Scholar
  164. Onderdonk AB, Johnston J, Mayhew JW & Gorbach SL (1976) Effect of dissolved oxygen and Eh onBacteroides fragilis during continuous culture. Appl. Environ. Microbiol. 31: 168–172Google Scholar
  165. Pagga U & Brown D (1986) The degradation of dyestuffs: Part II, behaviour of dyestuffs in aerobic biodegradation tests. Chemosphere 15: 479–491Google Scholar
  166. Parsons J (1992) Biodegradation of chlorinated dibenzo-p-dioxinsin the presence of suspended sediments. In: DECHEMA Preprints Soil Decontamination Using Biological Processes, Karlsruhe (pp. 564–569)Google Scholar
  167. Peters AC, Wimpenny JWT & Coombs JP (1987) Oxygen profiles in, and in the agar beneath, colonies ofBacillus cereus, Staphylococcus albus andEscherichia coli. J. Gen. Microbiol. 133: 1257–1263Google Scholar
  168. Pfaender FK & Alexander M (1972) Extensive microbial degradation of DDTin vitro and DDT metabolism by natural communities. J. Agric. Food Chem. 20: 842–846Google Scholar
  169. Pirt SJ & Lee YK (1983) Enhancement of methanogenesis by traces of oxygen in bacterial digestion of biomass. FEMS Microbiol. Lett. 18: 61–63Google Scholar
  170. Pitter P (1976) Determination of biological degradability of organic substances. Wat. Res. 10: 231–235Google Scholar
  171. Puhakka JA & Jarvinen K (1992) Aerobic fluidized-bed treatment of polychlorinated phenolic wood preservative constituents. Wat. Res. 26: 765–770Google Scholar
  172. Quensen-III JF, Tiedje JM & Boyd SA (1988) Reductive dechlorination of polychlorinated biphenyls by anacerobic microorganisms from sediments. Science 242: 752–754Google Scholar
  173. Ramanand K, Balba MT & Duffy J (1993) Reductive dehalogenation of chlorinated benzenes and toluenes under methanogenic conditions. Appl. Environ. Microbiol. 59: 3266–3272Google Scholar
  174. Revsbech NP, Christensen PB, Nielsen LP & Svrensen J (1989) Denitrification in a trickling filter biofilm studied by a microsensor for oxygen and nitrous oxide. Wat. Res. 23: 867–871Google Scholar
  175. Roberton AM & Wolfe RS (1970) Adenosine triphosphate pools in Methanobacterium. J. Bacteriol. 102: 43–51Google Scholar
  176. Rochkind-Dubinsky ML, Sayler GS & Blackburn JW (1987) Microbiological Decomposition of Chlorinated Aromatic Compounds. Microbiology Series Vol 18. Marcel Dekker, New YorkGoogle Scholar
  177. Rolfe RD, Hentges DJ, Campbell BJ & Barret JT (1978) Factors related to the oxygen tolerance of anaerobic bacteria. Appl. Environ. Microbiol. 36: 306–313Google Scholar
  178. Ryan AJ, Roxon JJ & Sivayavirojana A (1968) Bacterial azo reduction: a metabolic reaction in mammals. Nature 219: 854–855Google Scholar
  179. Salkinoja-Salonen M, Valo R, Apajalahti J, Halukinen R, Silakoski L & Jaakkola T (1984) Biodegradation of chlorophenolic compounds in wastes from wood processing industry. In: Klug MJ & Reddy CA (Eds) Current Perspective in Microbial Ecology (pp. 668–676). American Society for Microbiology, Washington, D.C.Google Scholar
  180. Sander P, Wittich RM, Fortnagel P, Wilkes H & Francke W (1991) Degradation of 1,2,4-trichloro- and 1,2,4,5-tetrachlorobenzene byPseudomonas strains. Appl. Environ. Microbiol. 57: 1430–1440Google Scholar
  181. Schink B (1985) Degradation of unsaturated hydrocarbons by methanogenic enrichment cultures. FEMS Microbiol. Ecol. 31: 9–77Google Scholar
  182. Schink B (1988a) Principles and limits of anaerobic degradation: environmental and technological aspects. In: Zehnder AJB (Ed) Biology of Anaerobic Microorganisms (pp. 771–846). John Wiley & Sons, New YorkGoogle Scholar
  183. Schink B (1988b) Fermentative degradation of nitrogenous aliphatic and aromatic compounds. In: Hall ER & Hobson PN (Eds) Anaerobic Digestion 1988, Proceedings of the 5th International Symposium on Anaerobic Digestion held in Bologna, Italy, 22–26 May, 1988 (pp. 459–464). Pergamon Press, OxfordGoogle Scholar
  184. Schink B (1991) Anaerobic news on phenols and aniline. In: Jacobson BN, Zeyer J, Jensen P, Westermann P & Ahring B (Eds) Anaerobic Biodegradation of Xenobiotic Compounds. Water Pollution Research Report 25 (pp. 9–13). Commission of the European Communities, BrusselsGoogle Scholar
  185. Schink B (1992) Syntrophism among prokaryotes. In: Balows A, Trüper HG, Dworkin M, Harder W & Schleifer KH (Eds) The Prokaryotes (pp. 276–299). Springer Verlag, New YorkGoogle Scholar
  186. Schink B & Pfennig N (1982) Fermentation of trihydroxybenzenes byPelobacter acidgalli gen. nov. sp. nov., a new strictly anaerobic, non-sporeforming bacterium. Arch. Microbiol. 133: 195–201Google Scholar
  187. Schraa G, Boone ML, Jetten MSM, van Neerven ARW, Colberg PC & Zehnder AJB (1986) Degradation of 1,4-dichlorobenzene byAlcaligenes sp. strain A175. Appl. Environ. Microbiol. 52: 1374–1381Google Scholar
  188. Scott RI, Williams TN, Whitmore TN & Lloyd D (1983) Direct measurement of methanogenesis in anaerobic digestors by membrane inlet mass spectrometry. Eur. J. Appl. Microbiol. Biotechnol. 18: 236–241Google Scholar
  189. Shaul GM, Holdsworth TJ, Dempsey CR & Dostal KA (1991) Fate of water soluble azo dyes in the activated sludge process. Chemosphere 22: 107–119Google Scholar
  190. Shelton DR & Tiedje JM (1984) General method for determining anaerobic biodegradation potential. Appl. Environ. Microbiol. 47: 850–857Google Scholar
  191. Sierra R, Harbrecht J, Kortekaas S & Lettinga G (1990) The continuous anaerobic treatment of pulping wastewaters. J. Ferment. Bioengineer. 70: 119–127Google Scholar
  192. Sjoblad RD & Bollag JM (1977) Oxidative coupling of aromatic pesticide intermediates by a fungal phenol oxidase. Appl. Environ. Microbiol. 33: 906–910Google Scholar
  193. Sjoblad RD & Bollag JM (1981) Oxidative coupling of aromatic compounds by enzymes from soil microorganisms. In: Paul EA & Ladd JN (Eds) Soil Biochemistry Vol. 5 (pp. 113–152). Marcel Dekker, Incorp., New YorkGoogle Scholar
  194. Smith MR (1994) The physiology of aromatic hydrocarbon degrading bacterial: Ratledge C (Ed) Biochemistry of Microbial Degradation (pp. 347–378). Kluwer Academic Publ., DordrechtGoogle Scholar
  195. Stahl JD & Aust SD (1993) Plasma membrane dependent reduction of 2,4,6-trinitrotoluene byPhanerochaete chrysosporium. Biochem. Biophys. Res. Comm. 192: 471–476Google Scholar
  196. Stevens TO, Crawford RL & Crawford DL (1991) Selection and isolation of bacteria capable of degrading dinoseb (2-sec-butyl-4,6-dinitrophenol). Biodegradation 2: 1–13Google Scholar
  197. Stevenson FJ (1982) Humus Chemistry. Wiley, New YorkGoogle Scholar
  198. Struijs J & Rogers JE (1989) Reductive dehalogenation of dichloroanilines by anaerobic microorganisms in fresh and dichlorophenol-acclimated pond sediments. Appl. Environ. Microbiol. 55: 2527–2531Google Scholar
  199. Subba-Rao RV & Alexander M (1977) Effect of chemical structure on the biodegradability of 1,1,1-trichloro-2,2′-bis(p-chlorophenyl) ethane (DDT). J. Agric. Food Chem. 25: 327–329Google Scholar
  200. Tanaka H, Kurosawa H & Murakami H (1986) Ethanol production from starch by a coimmobilized mixed culture system ofAspergillus awamori andZymomonas mobilis. Biotech. Bioeng. 28: 1761–1768Google Scholar
  201. Tatsumi K, Freyer A, Minard RD & Bollag JM (1994) Enzyme-mediated coupling of 3,4-dichloroaniline and ferulic acid: A model for pollutant binding to humic materials. Environ. Sci. Technol. 28: 210–215Google Scholar
  202. Thaller V & Turner JL (1972) Natural acetylenes. Part XXXV. Polyacetylenic acid and benzenoid metabolites from cultures of the fungus Lepista diemii Singer. J. Chem. Soc. Perkins Trans. 1972: 2032–2034Google Scholar
  203. Thauer RK, Jungermann K & Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41: 100–180Google Scholar
  204. Thurnheer T, Kohler T, Cook AM & Leisinger T (1986) Orthanilic acid and analogues as carbon sources for bacteria: Growth physiology and enzymic desulphonation. J. Gen. Microbiol. 132: 1215–1220Google Scholar
  205. Thurnheer T, Cook AM & Leisinger T (1988) Co-culture of defined bacteria to degraded seven sulfonated aromatic compounds: efficiency, rates and phenotypic variation. Appl. Microbiol. Biotechnol. 29: 605–609Google Scholar
  206. Tiedje JM, Sextone AJ, Parkin TB, Revsbech NP & Shelton DR (1984) Anaerobic processes in soil. Plant Soil 76: 197–212Google Scholar
  207. Tiehm A & Zumft W (1992) Mobilization and biodegradation of polycyclic aromatic hydrocarbons in the presence of technical surfactants. In: Preprints Soil Decontamination Using Biological Processes, 6–9 December, 1992, Karlsruhe, DECHEMA, Frankfurt (pp. 274–280)Google Scholar
  208. Toussaint M, Commandeur LCM, Parsons JR, Beurskens JEM & de Wolf J (1992) Reductive dechlorination of 1,2,3,4-tetrachloro-dibenzo-p-dioxin by a bacterial consortium isolated from lake Ketelmeer sediment: preliminary results. In: DECHEMA Preprints Soil Decontamination Using Biological Processes, Karlsruhe (pp. 578–585)Google Scholar
  209. Tucker ES, Saeger VW & Hicks O (1975) Activated sludge primary biodegradation of polychlorinated biphenyls. Bull. Environ. Cont. Toxicol. 14: 705–712Google Scholar
  210. Uotila JS, Kitunen VH, Apajalahti JHA & Salkinoja-Salonen MS (1992) Environment-dependent mechanism of dehalogenation byRhodococcus chlorophenolicus PCP-1. Appl. Microbiol. Biotechnol. 38: 408–412Google Scholar
  211. Valli K, Brock BJ, Joshi DK & Gold MH (1992) Degradation of 2,4-dinitrotoluene by the lignin-degrading fungusPhanerochaete chrysosporium. Appl. Environ. Microbiol. 58: 221–228Google Scholar
  212. Valo R, Haggblom M & Salkinoja-Salonen MS (1990) Bioremediation of simulated ground water by immobilized bacteria. Wat. Res. 24: 253–258Google Scholar
  213. Van Dort HM & Bedard DL (1991) Reductive ortho and meta dechlorination of a polychlorinated biphenyl congener by anaerobic microorganisms. Appl. Environ. Microbiol. 67: 1576–1578Google Scholar
  214. Van der Meer JR, Roelofsen W, Schraa G & Zehnder AJB (1987) Degradation of low concentrations of 1,4-dichlorobenzene byPseudomonas sp. strain P51 in nonsterile soil columns. FEMS Microbiol. Ecol. 45: 333–341Google Scholar
  215. Vogel TM & Grbic-Galic D (1986) Incorporation of oxygen from water into toluene and benzene during anaerobic fermentative transformation. Appl. Environ. Microbiol. 52: 200–202Google Scholar
  216. Volkering F, Breure A & Van Andel JG (1993) Effect of micro-organisms on the bioavailability and biodegradation of crystalline naphthalene. Appl. Microbiol. Biotechnol. 40: 535–540Google Scholar
  217. Wackett JP & Schanke CA (1992) Mechanisms of reductive dehalogenation by tranqisition metal cofactors found in anaerobic bacteria. In: Sigel H (Ed) Metal Ions in Biological Systems. Volume 28: Degradation of Environmental Pollutants by Microorganisms and their Metalloenzymes (pp. 61–97). Marcel Dekker, Inc., New YorkGoogle Scholar
  218. Walden CC (1980) Biological effects of pulp and paper mill effluents. In: Moo-Young M & Campbell WR (Eds) Proceedings of the Sixth International Fermentation Symposium, Vol. 2, Fuels, Chemicals, Foods and Waste Treatment, July 20–25, London, Canada (pp. 669–676)Google Scholar
  219. Walden WC & Hentges DJ (1975) Differential effects of oxygen and oxidation-reduction potential on the multiplication of three species of anaerobic intestinal bacteria. Appl. Microbiol. 30: 781–785Google Scholar
  220. Weber EJ (1991) Studies of benzidine-based dyes in sediment-water systems. Environ. Toxicol. Chem. 10: 609–618Google Scholar
  221. Weber EJ & Wolfe NL (1987) Kinetic studies of the reduction of aromatic azo compounds in anaerobic sediment/water systems. Environ. Toxicol. Chem. 6: 911–919Google Scholar
  222. Weber-Jr WJ, Jones BE & Katz LE (1987) Fate of toxic organic compounds in activated sludge and integrated PAC systems. Wat. Sci. Tech. 19: 471–482Google Scholar
  223. Weissenfels WD, H- Klewer J & Langhoff J (1992) Adsorption of polycyclic aromatic hydrocarbons (PAHs) by soil particles: influence on biodegradability and biotoxicity. Appl. Microbiol. Biotechnol. 36: 689–696Google Scholar
  224. Whitman WB, Bown TL & Boone DR (1992) The methanogenic bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W & Schleifer KH (Eds) The Prokaryotes (pp. 719–797). Springer-Verlag, New YorkGoogle Scholar
  225. Wijffels RH, Eekhof MR, Tramper J, de-Beer D & van-den-Heuvel JC (1991) Growth and substrate consumption by immobilized Nitrobacter agilis: validation of a dynamic model. In: Proceedings of the International Symposium of Environmental Biotechnology, Vol. I. Royal Flemish Society of Engineers, Oostende, Belgium (pp. 697–699)Google Scholar
  226. Woods SL, Ferguson FJ & Benjamin MM (1989) Characterization of chlorophenol and chloromethoxybenzene biodegradation during anaerobic treatment. Environ. Sci. Technol. 23: 62–68Google Scholar
  227. Wu WM, Bhatnagar L & Zeikus JG (1993) Performance of anaerobic granules for degradation of pentachlorophenol. Appl. Environ. Microbiol. 59: 389–397Google Scholar
  228. Wu W, Hu J, Gu X, Zhao Y, Zhang H & Gu G (1987) Cultivation of anaerobic granular sludge in UASB reactors with aerobic activated sludge as seed. Wat. Res. 21: 789–799Google Scholar
  229. Wuhrmann K, Mechsner K & Kappeler T (1980) Investigation on rate — determining factors in the microbial reduction of azo dyes. Eur. J. Appl. Microbiol. Biotechnol. 9: 325–338Google Scholar
  230. Yagi O & Sudo R (1980) Degradation of polychlorinated biphenyls by microorganisms. JWPCF 52: 1035–1043Google Scholar
  231. Yen CPC, Perenich TA & Baughman GL (1991) Fate of commercial disperse dyes in sediments. Environ. Toxicol. Chem. 6: 1009–1017.Google Scholar
  232. Zaoyan Y, Ke S, Guangliang S, Fan Y, Jinshan D & Huanian M (1992) Anaerobic-aerobic treatment of a dye waste-water by combination with activated sludge. Wat. Sci. Technol. 26: 2093–2096Google Scholar
  233. Zehnder AJB & Wuhrmann K (1977) Physiology of aMethanobacterium strain AZ. Arch. Microbiol. 111: 199–205Google Scholar
  234. Zeyer J, Kuhn EP & Schwarzenbach RP (1986) Rapid microbial mineralization of toluene and 1,3-dimethylbenzene in the absence of molecular oxygen. Appl. Environ. Microbiol. 52: 944–947Google Scholar
  235. Zimmermann T, Gasser F, Kulla HG & Leisinger T (1984) Comparison of two bacterial azoreductases acquired during adaptation to growth on azo dyes. Arch. Microbiol. 138: 37–43Google Scholar
  236. Zimmermann W (1990) Degradation of lignin by bacteria. J Biotechnol 13: 119–130Google Scholar
  237. Zitomer DH & Speece RE (1993) Sequential environments for enhanced biotransformation of aqueous contaminants. Environ. Sci. Technol. 27: 227–244Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Jim A. Field
    • 1
  • Alfons J. M. Stams
    • 2
  • Mario Kato
    • 1
  • Gosse Schraa
    • 2
  1. 1.Department of Environmental TechnologyWageningen Agricultural UniversityWageningenThe Netherlands
  2. 2.Department of MicrobiologyWageningen Agricultural UniversityWageningenThe Netherlands

Personalised recommendations