Journal of engineering physics

, Volume 48, Issue 4, pp 390–396 | Cite as

Influence of external turbulence on the velocity field in the wake behind an ellipsoid of revolution

  • B. A. Kolovandin
  • N. N. Luchko


The velocity field in the wake behind an ellipsoid of revolution is numerically investigated on the basis of a second-order differential model as a function of the energetic and structural state of the external isotropic turbulence.


Statistical Physic Velocity Field Structural State Isotropic Turbulence Differential Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    G. Compte—Bellot and S. Corrsin, “The use of contraction to improve the isotropy of gridgenerated turbulence,” J. Fluid Mech.,25, 657–682 (1966).Google Scholar
  2. 2.
    J. C. Bennet and S. Corrsin, “Small Reynolds number nearly isotropic turbulence in a straight duct and a contraction,” Phys. Fluids,21, 2129–2142 (1978).Google Scholar
  3. 3.
    W. Frost and T. H. Moulden (eds.), Handbook of Turbulence, Plenum Press, New York-London (1977).Google Scholar
  4. 4.
    B. A. Kolovandin and N. N. Luchko, “Numerical modeling of the turbulent velocity field of an axisymmetric momentum-free wake,” Heat and Mass Transfer-VI, Vol. 1, Pt. 2 [in Russian], Inst. Heat and Mass Transfer, Academy of Sciences of the Belorussian SSR, Minsk (1980), pp. 126–135.Google Scholar
  5. 5.
    B. A. Kolovandin, “On the question of modeling turbulence dynamics for its nonasymptotic state,” Problems of Turbulent Transfer [in Russian], Inst. Heat and Mass Transfer, Beloruss. Acad. Sci., Minsk (1982), pp. 3–21.Google Scholar
  6. 6.
    B. A. Kolovandin, Modeling of Heat Transfer in Inhomogeneous Turbulence [in Russian], Nauka i Tekhnika, Minsk (1980).Google Scholar
  7. 7.
    B. A. Kolovandin, “Correlation modeling of transfer processes in shear turbulent flows,” Preprint No. 5 [in Russian], Inst. Heat and Mass Transfer, Beloruss. Acad. Sci., Minsk (1982).Google Scholar
  8. 8.
    P. G. Saffman, “Note on decay of homogeneous turbulence,” Phys. Fluids,10, 1349–1357 (1967).Google Scholar
  9. 9.
    L. G. Loitsyanskii, “Certain fundamental regularities of isotropic turbulent flow,” Trudy TsAGI, No. 440, 2–23 (1939).Google Scholar
  10. 10.
    J. R. Herring, “Statistical turbulence theory and turbulence phenomenology,” NASA, SP-321, 41–46 (1973).Google Scholar
  11. 11.
    U. Schuman and G. S. Patterson, “Numerical study of pressure and velocity fluctuations in nearly isotropic turbulence,” J. Fluid Mech.,88, 685–709 (1978).Google Scholar
  12. 12.
    F. H. Champagne, V. G. Harris, and S. Corrsin, “Experiments on nearly homogeneous shear flow,” J. Fluid Mech.,41, 81–139 (1970).Google Scholar
  13. 13.
    A. A. Samarskii, Introduction to the Theory of Difference Schemes [in Russian], Nauka, Moscow (1971).Google Scholar
  14. 14.
    B. A. Kolovandin, N. N. Luchko, Yu. M. Dmitrenko, and V. L. Zhdanov, “Turbulent wake behind an axisymmetric body and its interaction with external turbulence,” Preprint No. 10 [in Russian], Inst. Heat and Mass Transfer, Beloruss. Acad. Sci., Minsk (1982).Google Scholar
  15. 15.
    M. S. Uberoi and P. Freymuth, “Turbulent energy balance and spectra of the axisymmetric wake,” Phys. Fluids,13, 2205–2210 (1970).Google Scholar
  16. 16.
    V. I. Bukreev, V. A. Kostomakha, and Yu. M. Lytkin, “Axisymmetric turbulent wake behind streamlined body,” Dynamics of a Continuous Medium [in Russian], No. 10, Hydrodynamics Inst. Siberian Branch, USSR Acad. Sci., Novosibirsk (1972), pp. 202–207.Google Scholar
  17. 17.
    I. Wygnanski and R. Fiedler, “Some measurements in the self-preserved jet,” J. Fluid Mech.,38, 577–612 (1966).Google Scholar
  18. 18.
    J. L. Lumley and M. Khajch-Nouri, “Computational modeling of turbulent transport,” Adv. Geophys.,18A, 169–193 (1974).Google Scholar
  19. 19.
    O. M. Phillips, “The final period of decay of nonhomogeneous turbulence,” Proc. Camb. Philos. Soc.,52, 135–151 (1955).Google Scholar
  20. 20.
    P. Freymuth, “Search for the final period of decay of axisymmetric turbulent wake,” J. Fluid Mech.,68, 813–839 (1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • B. A. Kolovandin
    • 1
  • N. N. Luchko
    • 1
  1. 1.A. V. Lykov Institute of Heat and Mass TransferAcademy of Sciences of the Belorussian SSRMinsk

Personalised recommendations