Antonie van Leeuwenhoek

, Volume 68, Issue 3, pp 225–229 | Cite as

Chromosome-encoded inducible copper resistance inPseudomonas strains

  • Eréndira Vargas
  • Sergio Gutiérrez
  • Ma. Elena Ambriz
  • Carlos Cervantes
Research Papers

Abstract

NinePseudomonas strains were selected by their high copper tolerance from a population of bacteria isolated from heavy-metal polluted zones. Copper resistance (Cu r ) was inducible by previous exposure of cultures to subinhibitory amounts of copper sulfate. All nine strains possessed large plasmids, but transformation and curing results suggest that Cu r is conferred by chromosomal genes. Plasmid-lessPseudomonas aeruginosa PAO-derived strains showed the same level of Cu r as environmental isolates and their resistance to copper was also inducible. Total DNA from the environmentalPseudomonas, as well as fromP. aeruginosa PAO strains, showed homology to a Cu r P. syringae cop probe at low-stringency conditions but failed to hybridize at high-stringency conditions.

Key words

copper resistance Pseudomonas 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bender CL & Cooksey DA (1986) Indigenous plasmids inPseudomonas syringae pv.tomato: conjugative transfer and role in copper resistance. J. Bacteriol. 165: 534–541Google Scholar
  2. 2.
    Brown NL, Lee BTO & Silver S (1994) Bacterial transport of and resistance to copper, pp. 405–435. In: Sigel H (Ed.) Metal Ions in Biological Systems, Vol. 30. Marcel Dekker, New YorkGoogle Scholar
  3. 3.
    Casse F, Boucher C, Julliot JS, Michel M & Denaire J (1979) Identification and characterization of large plasmids inRhizobium meliloti using agarose gel electrophoresis. J. Gen. Microbiol. 113: 229–242Google Scholar
  4. 4.
    Cervantes C & Chávez J (1992) Plasmid-determined resistance to arsenic and antimony inPseudomonas aeruginosa. Antonie van Leeuwenhoek 61: 333–337Google Scholar
  5. 5.
    Cervantes C & Gutierrez-Corona F (1994) Copper resistance mechanisms in bacteria and fungi. FEMS Microbiol. Rev. 14: 121–138Google Scholar
  6. 6.
    Cha J-S & Cooksey DA (1991) Copper resistance inPseudomonas syringae mediated by periplasmic and outer membrane proteins. Proc. Natl. Acad. Sci. USA 88: 8915–8919Google Scholar
  7. 7.
    Cooksey DA (1993) Copper uptake and resistance in bacteria. Molec. Microbiol. 7: 1–5Google Scholar
  8. 8.
    Cooksey DA, Azad HR, Cha J & Lim C (1990) Copper resistance gene homologs in pathogenic and saprophytic bacterial species from tomato. Appl. Environ. Microbiol. 56: 431–435Google Scholar
  9. 9.
    Holt JG, Krieg NR, Sneath PHA, Staley JT & Williams ST (1994) Bergey's Manual of Determinative Bacteriology, 9th ed. Williams & WilkinsGoogle Scholar
  10. 10.
    Huckle JW, Morby AP, Turner JS & Robinson NJ (1993) Isolation of a prokaryotic metallothionein and analysis of transcriptional control by trace metal ions. Molec. Microbiol. 7: 177–187Google Scholar
  11. 11.
    Kieser T (1984) Factors affecting the isolation of CCC DNA fromStreptomyces lividans andEscherichia coli. Plasmid 12: 10–36Google Scholar
  12. 12.
    Lee BTO, Brown NL, Rogers S, Bergemann A, Camakaris J & Rouch D (1990) Bacterial response to copper in the environment: copper resistance inEscherichia coli as a model system. NATO ASI Ser. G. 23: 625–632Google Scholar
  13. 13.
    Lee YA, Hendson M & Schroth MN (1992) Cloning and characterization of copper-resistance genes fromXanthomonas campestris pv.juglandis. Phytopathology 82: 1125Google Scholar
  14. 14.
    Maniatis T, Sambrook J & Fritsch EF (1989) Molecular cloning. A Laboratory Manual. 2nd. Edition. Cold Spring Harbor Laboratory Press. Cold spring Harbor, New YorkGoogle Scholar
  15. 15.
    Mellano MA & Cooksey DA (1988) Nucleotide sequence and organization of copper resistance genes fromPseudomonas syringae pv.tomato. J. Bacteriol. 170: 2879–2883Google Scholar
  16. 16.
    Odermatt A, Suter H, Krapf R & Solioz M (1993) Primary structure of two P-type ATPases involved in copper homeostasis inEnterococcus hirae. J. Biol. Chem. 268: 12775–12779Google Scholar
  17. 17.
    Silver S & Ji G (1994) Newer systems for bacterial resistances to toxic heavy metals. Environ. Health Perspect. 102 (Suppl. 3): 107–113Google Scholar
  18. 18.
    Silver S, Lee BTO, Brown NL & Cooksey DA (1993) Bacterial plasmid resistances to copper, cadmium and zinc, p. 38–53. In: Welch AJ & Chapman SK (Eds) The Chemistry of the Copper and Zinc Triads. Royal Society of Chemistry, LondonGoogle Scholar
  19. 19.
    Williams J, Morgan A, Rouch D, Brown N & Lee BTO (1993) Copper-resistance enteric bacteria from United Kingdom and Australian piggeries. Appl. Environ. Microbiol. 59: 2531–2537Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Eréndira Vargas
    • 1
  • Sergio Gutiérrez
    • 1
  • Ma. Elena Ambriz
    • 1
  • Carlos Cervantes
    • 1
  1. 1.Instituto de Investigaciones Químico-BiológicasUniversidad MichoacanaMorelia, Mich.México

Personalised recommendations