Antonie van Leeuwenhoek

, Volume 66, Issue 1–3, pp 209–221 | Cite as

Metabolism of homoacetogens

  • Gabriele Diekert
  • Gert Wohlfarth
Research Articles

Abstract

Homoacetogenic bacteria are strictly anaerobic microorganisms that catalyze the formation of acetate from C1 units in their energy metabolism. Most of these organisms are able to grow at the expense of hydrogen plus CO2 as the sole energy source. Hydrogen then serves as the electron donor for CO2 reduction to acetate. The methyl group of acetate is formed from CO2 via formate and reduced C1 intermediates bound to tetrahydrofolate. The carboxyl group is derived from carbon monoxide, which is synthesized from CO2 by carbon monoxide dehydrogenase. The latter enzyme also catalyzes the formation of acetyl-CoA from the methyl group plus CO. Acetyl-CoA is then converted either to acetate in the catabolism or to cell carbon in the anabolism of the bacteria. The homoacetogens are very versatile anaerobes, which convert a variety of different substrates to acetate as the major end product.

Key words

acetate formation from CO2 anaerobic acetate degradation autotrophic CO2 fixation carbon monoxide dehydrogenase homoacetogenic bacteria 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamse AD (1980) New isolation ofClostridium aceticum (Wieringa). Antonie van Leeuwenhoek J. Microbiol. Serol. 46: 523–531Google Scholar
  2. Andreesen JR & Ljungdahl LG (1974) Nicotinamide adenine dinucleotide phosphate dependent formate dehydrogenase fromClostridium thermoaceticum: Purification and properties. J. Bacteriol. 120: 6–14Google Scholar
  3. Bache R & Pfennig N (1981) Selective isolation ofAcetobacterium woodii on methoxylated aromatic acids and determination of growth yields. Arch. Microbiol. 130: 255–261Google Scholar
  4. Bak F, Finster K & Rothfuß F (1992) Formation of dimethylsulfide and methanethiol from methoxylated aromatic compounds and inorganic sulfide by newly isolated anaerobic bacteria. Arch. Microbiol. 157: 529–534Google Scholar
  5. Balch WE, Schoberth S, Tanner RS & Wolfe RS (1977)Acetobacterium, a new genus of hydrogen-oxidizing, carbon dioxide-reducing, anaerobic bacteria. Int. J. Sys. Bacteriol. 27: 355–361Google Scholar
  6. Barker HA & Kamen MD (1945) Carbon dioxide utilization in the synthesis of acetic acid byClostridium thermoaceticum. Proc. Natl. Acad. Sci. USA 31: 219–225Google Scholar
  7. Bastian NR, Diekert G, Niederhoffer EC, Teo BK, Walsh CT & Orme-Johnson WH (1988) Nickel and iron EXAFS of carbon monoxide dehydrogenase fromClostridium thermoaceticum strain DSM. J. Am. Chem. Soc. 110: 5581–5582Google Scholar
  8. Becher B, Müller V & Gottschalk G (1992) The methyltetrahydromethanopterin:coenzyme M methyltransferase ofMethanosarcina strain Göl is a primary sodium pump. FEMS Microbiol. Lett. 91: 239–244Google Scholar
  9. Berman MH & Frazer AC (1992) Importance of tetrahydrofolate and ATP in the anaerobic O-demethylation reaction for phenylmethylethers. Appl. Environ. Microbiol. 58: 925–931Google Scholar
  10. Braun M, Mayer F & Gottschalk G (1981)Clostridium aceticum (Wieringa), a microorganism producing acetic acid from molecular hydrogen and carbon dioxide. Arch. Microbiol. 128: 288–293Google Scholar
  11. Breznak JA (1992) The genusSporomusa. In: Balows A, Trüper HG, Dworkin M, Harder W & Schleifer KH (Eds) The prokaryotes, vol 1 (pp 517–533). Springer-Verlag, New YorkGoogle Scholar
  12. Clark JE & Ljungdahl LG (1984) Purification and properties of 5,10-methylenetetrahydrofolate reductase, an iron-sulfur flavoprotein fromClostridium formicoaceticum. J. Biol. Chem. 259: 10845–10849Google Scholar
  13. Daniel SL & Drake HL (1993) Oxalate- and glyoxylate-dependent growth and acetogenesis byClostridium thermoaceticum. Appl. Environ. Microbiol. 59: 3062–3069Google Scholar
  14. Daniel SL, Keith ES, Yang H, Lin YS & Drake HL (1991) Utilization of methoxylated aromatic compounds by the acetogenClostridium thermoaceticum: expression and specificity of the CO-dependent O-demethylating activity. Biochem. Biophys. Res. Comm. 180: 416–422Google Scholar
  15. Daniel SL, Wu Z & Drake HL (1988) Growth of thermophilic acetogenic bacteria on methoxylated aromatic acids. FEMS Microbiol. Lett. 52: 25–28Google Scholar
  16. Diekert G (1992) The acetogenic bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W & Schleifer KH (Eds) The prokaryotes, vol 1 (pp 517–533). Springer-Verlag, New YorkGoogle Scholar
  17. Diekert GB, Graf EG & Thauer RK (1979) Nickel requirement for carbon monoxide dehydrogenase formation inClostridium pasteurianum. Arch. Microbiol. 122: 117–120Google Scholar
  18. Diekert G, Hansch M & Conrad R (1984) Acetate synthesis from 2 CO2 in acetogenic bacteria: is carbon monoxide an intermediate? Arch. Microbiol. 138: 224–228Google Scholar
  19. Diekert G & Ritter M (1983) Purification of the nickel protein carbon monoxide dehydrogenase ofClostridium thermoaceticum. FEBS Lett. 151: 41–44Google Scholar
  20. Diekert G, Schrader E & Harder W (1986) Energetics of CO formation and CO oxidation in cell suspensions ofAcetobacterium woodii. Arch. Microbiol. 144: 386–392Google Scholar
  21. Diekert G & Thauer RK (1978) Carbon monoxide oxidation byClostridium thermoaceticum andClostridium formicoaceticum. J. Bacteriol. 136: 597–606Google Scholar
  22. Diekert G & Thauer RK (1980) The effect of nickel on carbon monoxide dehydrogenase formation inClostridium thermoaceticum andClostridium formicoaceticum. FEMS Microbiol. Lett. 7: 187–189Google Scholar
  23. Diekert G & Wohlfarth G (1994a) Energetics of acetogenesis from C1-units. In: Drake HL (Ed) Acetogenesis (in press). Chapman and Hall, New YorkGoogle Scholar
  24. Diekert G & Wohlfarth G (1994b) Kohlenmonoxid im Stoffwechsel strikt anaerober Bakterien. Bioengineering, 1/94: 25–32Google Scholar
  25. Dorn M, Andreesen JR & Gottschalk G (1978) Fermentation of fumerate and L-malate byClostridium formicoaceticum. J. Bacteriol. 133: 26–32Google Scholar
  26. Drake HL Hu SI, & Wood HG (1981) Purification of five components fromClostridium thermoaceticum which catalyze synthesis of acetate from pyruvate and methyltetrahydrofolate. J. Biol. Chem. 256: 11137–11144Google Scholar
  27. Eichler B & Schink B (1984) Oxidation of primary aliphatic alcohols byAcetobacterium carbinolicum sp. nov., a homoacetogenic anaerobe. Arch. Microbiol. 140: 147–152Google Scholar
  28. Elliott JI & Ljungdahl LG (1982) Isolation and characterization of an Fe8-S8 ferredoxin (ferredoxin II) fromClostridium thermoaceticum. J. Bacteriol. 151: 328–333Google Scholar
  29. Ferry JG (1992) Methane from acetate. J. Bacteriol. 174: 5489–5495Google Scholar
  30. Fischer F, Lieske R & Winzer K (1932) Biologische Gasreaktionen, II. Mitteilung: über die Bildung von Essigsäure bei der biologischen Umsetzung von Kohlenoxyd und Kohlensäure mit Wasserstoff zu Methan. Biochem. Z. 245: 2–12Google Scholar
  31. Fontaine FE, Peterson WH, McCoy E & Johnson MJ (1942) A new type of glucose fermentation byClostridium thermoaceticum n. sp. J. Bacteriol. 43: 701–715Google Scholar
  32. Fuchs G (1986) CO2 fixation in acetogenic bacteria: variations on a theme. FEMS Microbiol. Rev. 39: 181–213Google Scholar
  33. Geerligs G, Aldrich HC, Harder W & Diekert G (1987) Isolation and characterization of a carbon monoxide utilizing strain of the acetogenPeptostreptococcus productus. Arch. Microbiol. 148: 305–313Google Scholar
  34. Geerligs G, Schönheit P & Diekert G (1989) Sodium dependent acetate formation from CO2 inPeptostreptococcus productus (strain Marburg). FEMS Microbiol. Lett. 57: 253–258Google Scholar
  35. Genthner BRS & Bryant MP (1982) Growth ofEubacterium limosum with carbon monoxide as the energy source. Appl. Environ. Microbiol. 43: 70–74Google Scholar
  36. Genthner BRS, Davis CL & Bryant MP (1981) Features of rumen and sewage sludge strains ofEubacterium limosum, a methanol-and H2-CO2-utilizing species. Appl. Environ. Microbiol. 42: 12–19Google Scholar
  37. Gottwald M, Andreesen JR, LeGall J & Ljungdahl LG (1975) Presence of cytochrome and menaquinone inClostridium formicoaceticum andClostridium thermoaceticum. J. Bacteriol. 122: 325–328Google Scholar
  38. Grethlein AJ, Worden RM, Jain MK & Datta R (1991) Evidence for production of n-butanol from carbon monoxide byButyribacterium methylotrophicum. J. Ferm. Bioeng. 72: 58–60Google Scholar
  39. Hamlett NV & Blaylock BA (1969) Synthesis of acetate from methanol. Bacteriol. Proc.: 207Google Scholar
  40. Hansen B, Bokranz M, Schönheit P & Kröger A (1988) ATP formation coupled to caffeate reduction by H2 inAcetobacterium woodii NZval6. Arch. Microbiol. 155: 447–451Google Scholar
  41. Heise R, Müller V & Gottschalk G (1989) Sodium dependence of acetate formation by the acetogenic bacteriumAcetobacterium woodii. J. Bacteriol. 171: 5473–5478Google Scholar
  42. Heise R, Müller V & Gottschalk G (1992) Presence of a sodium-translocating ATPase in membrane vesicles of the homoacetogenic bacteriumAcetobacterium woodii. Eur. J. Biochem. 206: 553–557Google Scholar
  43. Heise R, Müller V & Gottschalk G (1993) Acetogenesis and ATP synthesis inAcetobacterium woodii are coupled via a transmembrane primary sodium ion gradient. FEMS Microbiol. Lett. 112: 261–268Google Scholar
  44. Heyer H, Stal L & Krumbein WE (1989) Simultaneous heterolactic and acetate fermentation in the marine cyanobacteriumOscillatoria limosa incubated anaerobically in the dark. Arch. Microbiol. 151: 558–564Google Scholar
  45. Hsu T, Daniel SL, Lux MF & Drake HL (1990) Biotransformations of carboxylated aromatic compounds by the acetogenClostridium thermoaceticum: generation of growth-supportive CO2 equivalents under CO2-limited conditions. J. Bacteriol. 172: 212–217Google Scholar
  46. Hugenholtz J, Ivey DM & Ljungdahl LG (1987) Carbon monoxide-driven electron transport inClostridium thermoautotrophicum membranes. J. Bacteriol. 169: 5845–5847Google Scholar
  47. Hugenholtz J & Ljungdahl LG (1990) Metabolism and energy generation in homoacetogenic clostridia. FEMS Microbiol. Rev. 87: 383–390Google Scholar
  48. Kamlage B & Blaut M (1993) Isolation of a cytochrome-deficient mutant strain ofSporomusa sphaeroides not capable of oxidizing methyl groups. J. Bacteriol. 175: 3043–3050Google Scholar
  49. Kamlage B, Boelter A & Blaut M (1993) Spectroscopic and potentiometric characterization of cytochromes in twoSporomusa species and their expression during growth on selected substrates. Arch. Microbiol. 159: 189–196Google Scholar
  50. Kreft JU & Schink B (1993) Demethylation and degradation of phenylmethylethers by the sulfide-methylating homoacetogenic bacterium strain TMBS 4. Arch. Microbiol. 159: 308–315Google Scholar
  51. Kröger A, Geisler V, Lemma E, Theis F & Lenger R (1992) Bacterial fumarate respiration. Arch. Microbiol. 158: 311–314Google Scholar
  52. Kumar M, Lu WP, Liu L & Ragsdale SW (1993) Kinetic evidence that carbon monoxide dehydrogenase catalyzes the oxidation of carbon monoxide and the synthesis of acetyl-CoA at separate metal centers. J. Am. Chem. Soc. 115: 11646–11647Google Scholar
  53. Lee MJ & Zinder SH (1988a) Isolation and characterization of a thermophilic bacterium which oxidizes acetate in syntrophic association with a methanogen and which grows acetogenically on H2-CO2. Appl. Environ. Microbiol. 54: 124–129Google Scholar
  54. Lee MJ & Zinder SH (1988b) Carbon monoxide pathway enzyme activities in a thermophilic anaerobic bacterium grown acetogenically and in a syntrophic acetate-oxidizing coculture. Arch. Microbiol. 150: 513–518Google Scholar
  55. Ljungdahl LG (1986) The autotrophic pathway of acetate synthesis in acetogenic bacteria. Ann. Rev. Microbiol. 40: 415–450Google Scholar
  56. Ljungdahl LG, Brewer JM, Neece SH & Fairwell T (1970) Purification, stability, and composition of formyltetrahydrofolate synthetase fromClostridium thermoaceticum. J. Biol. Chem. 245: 4791–4797Google Scholar
  57. Ljungdahl LG, Irion E & Wood HG (1966) Role of corrinoids in the total synthesis of acetate from CO2 byClostridium thermoaceticum. Fed. Proc. Am. Soc. Exp. Biol. 25: 1642–1648Google Scholar
  58. Ljungdahl LG & Wood HG (1969) Total synthesis of acetate from CO2 by heterotrophic bacteria. Annu. Rev. Microbiol. 23: 515–538Google Scholar
  59. Ljungdahl LG & Wood HG (1982) Acetate biosynthesis. In: Dolphin D (Ed) Vitamin B12 (pp 165–202). Wiley, New YorkGoogle Scholar
  60. Lorowitz WH & Bryant MP (1984)Peptostreptococcus productus strain that grows rapidly with CO as the energy source. Appl. Environ. Microbiol. 47: 961–964Google Scholar
  61. Ma K, Siemon S & Diekert G (1987) Carbon monoxide metabolism in cell suspensions ofPeptostreptococcus productus strain Marburg. FEMS Microbiol. Lett. 43: 367–371Google Scholar
  62. Margheri MC & Allotta G (1993) Homoacetic fermentation in the cyanobacteriumNostoc sp. strain Cc fromCycas circinalis. FEMS Microbiol. Lett. 111: 213–218Google Scholar
  63. Matthies C, Freiberger A & Drake HL (1993) Fumarate dissimilation and differential reductant flow byClostridium formicoaceticum andClostridium aceticum. Arch. Microbiol. 160: 273–278Google Scholar
  64. Meßmer M, Wohlfarth G & Diekert G (1993) Methyl chloride metabolism of the strictly anaerobic, methyl chloride-utilizing homoacetogen strain MC. Arch. Microbiol. 160: 383–387Google Scholar
  65. Möller B, Ossmer R, Howard BH, Gottschalk G & Hippe H (1984)Sporomusa, a new genus of gram-negative anaerobic bacteria includingSporomusa sphaeroides spec. nov. andSporomusa ovata spec. nov. Arch. Microbiol. 139: 388–396Google Scholar
  66. Moore MR, O'Brien WE & Ljungdahl LG (1974) Purification and characterization of nicotinamide adenine dinucleotide-dependent methylenetetrahydrofolate dehydrogenase fromClostridium formicoaceticum. J. Biol. Chem. 249: 5250–5253Google Scholar
  67. O'Brien WE, Brewer JM & Ljungdahl LG (1973) Purification and characterization of thermostable, 5,10-methylenetetrahydrofolate dehydrogenase fromClostridium thermoaceticum. J. Biol. Chem. 248: 403–408Google Scholar
  68. Plugge CM, Dijkema C & Stams AJM (1993) Acetyl-CoA cleavage pathway in a syntrophic propionate oxidizing bacterium growing on fumarate in the absence of methanogens. FEMS Microbiol. Lett. 110: 71–76Google Scholar
  69. Poston JM, Kuratomi K & Stadtman ER (1964) Methyl-vitamin B12 as a source of methyl groups for the synthesis of acetate by cell-free extracts ofClostridium thermoaceticum. Ann. N.Y. Acad. Sci. 112: 804–806Google Scholar
  70. Ragsdale SW (1991) Enzymology of the acetyl-CoA pathway of CO2 fixation. Crit. Rev. Biochem. Mol. Biol. 26: 261–300Google Scholar
  71. Ragsdale SW, Clark JE, Ljungdahl LG, Lundie LL & Drake HL (1983a) Properties of purified carbon monoxide dehydrogenase fromClostridium thermoaceticum, a nickel, iron-sulfur protein. J. Biol. Chem. 258: 2364–2369Google Scholar
  72. Ragsdale SW, Lindahl PA & Münck E (1987) Mössbauer, EPR, and optical studies of the corrinoid/iron-sulfur protein involved in the synthesis of acetyl coenzyme A byClostridium thermoaceticum. J. Biol. Chem 262: 14289–14297Google Scholar
  73. Ragsdale SW, Ljungdahl LG & der Vartanian DV (1983b) Isolation of carbon monoxide dehydrogenase fromAcetobacterium woodii and comparison of its properties with those of theClostridium thermoaceticum enzyme. J. Bacteriol. 155: 1224–1237Google Scholar
  74. Ragsdale SW, Wood HG & Antholine WE (1985) Evidence that an iron-nickel-carbon complex is formed by reaction of CO with CO dehydrogenase fromClostridium thermoaceticum. Proc. Natl. Acad. Sci. USA 82: 6811–6814Google Scholar
  75. Reubelt U, Wohlfarth G, Schmid R & Diekert G (1991) Purification and characterization of ferredoxin fromPeptostreptococcus productus (strain Marburg). Arch. Microbiol. 156: 422–426Google Scholar
  76. Roberts JR, Lu WP & Ragsdale SW (1992) Acetyl-coenzyme-A synthesis from methyl-tetrahydrofolate, CO, and coenzyme-A by enzymes purified fromClostridium thermoaceticum — attainment ofin vivo rates and identification of rate-limiting steps. J. Bacteriol. 174: 4667–4676Google Scholar
  77. Schramm E & Schink B (1991) Ether-cleaving enzyme and diol dehydratase involved in anaerobic polyethylene glycol degradation by a newAcetobacterium sp. Biodeg. 2: 71–79Google Scholar
  78. Schulman M, Ghambeer RK, Ljungdahl LG & Wood HG (1973) Total synthesis of acetate from CO2. VII. Evidence withClostridium thermoaceticum that the carboxyl group of acetate is derived from the carboxyl of pyruvate by transcarboxylation and not by fixation of CO2. J. Biol. Chem. 248: 6255–6261Google Scholar
  79. Schuppert B & Schink B (1990) Fermentation of methoxyacetate to glycolate and acetate by newly isolated strains ofAcetobacterium sp. Arch. Microbiol. 153: 200–204Google Scholar
  80. Seifritz C, Daniel SL, Gößner A & Drake HL (1993) Nitrate as a preferred electron sink for the acetogenClostridium thermoaceticum. J. Bacteriol. 175: 8008–8013Google Scholar
  81. Shin W, Anderson ME & Lindahl PA (1993) Heterogenous nickel environments in carbon monoxide dehydrogenase fromClostridium thermoaceticum. J. Am. Chem. Soc. 115: 5522–5526Google Scholar
  82. Stupperich E & Konle R (1993) Corrinoid-dependentmethyl transfer reactions are involved in methanol and 3,4-dimethoxybenzoate metabolism bySporomusa ovata. Appl. Environ. Microbiol. 59: 3110–3116Google Scholar
  83. Tananka K & Pfennig N (1988) Fermentation of 2-methoxyethanol byAcetobacterium malicum sp. nov. andPelobacter venetianus. Arch. Microbiol. 149: 181–187Google Scholar
  84. Tanner RS, Miller LM & Yang D (1993)Clostridium ljungdahlii sp. nov., an acetogenic species in clostridial rRNA homology group I. Int. J. Sys. Bacteriol. 43: 232–236Google Scholar
  85. Thauer RK, Jungermann K & Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41: 100–180Google Scholar
  86. Thauer RK, Möller-Zinkhan D & Spormann AM (1989) Biochemistry of acetate catabolism in anaerobic chemotrophic bacteria. Ann. Rev. Microbiol. 43: 43–67Google Scholar
  87. Traunecker J, Preuß A & Diekert G (1991) Isolation and characterization of a methyl chloride utilizing, strictly anaerobic bacterium. Arch. Microbiol. 156: 416–421Google Scholar
  88. Tschech A & Pfennig N (1984) Growth yield increase linked to caffeate reduction inAcetobacterium woodii. Arch. Microbiol. 137: 163–167Google Scholar
  89. Van der Meijden P, van der Drift C & Vogels GD (1984) Methanol conversion inEubacterium limosum. Arch. Microbiol. 138: 360–364Google Scholar
  90. Wagener S & Schink B (1988) Fermentative degradation of nonionic surfactants and polyethylene glycol by enrichment cultures and by pure cultures of homoacetogenic and propionate-forming bacteria. Appl. Environ. Microbiol. 54: 561–565Google Scholar
  91. Whitman WB, Bowen TL & Boone DR (1992) The methanogenic bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W & Schleifer KH (Eds) The prokaryotes, vol 1 (pp 719–767). Springer-Verlag, New YorkGoogle Scholar
  92. Wieringa KT (1936) Over het verdwijnen van waterstof en koolzuur onder anaerobe voorwaarden; voortzetting van een onderzoek van wijlen Prof. Dr. Ir. N.L. Söhngen. Antonie van Leeuwenhoek J. Microbiol. Serol. 3: 263–273Google Scholar
  93. Winters DK & Ljungdahl LG (1989) PQQ-dependent methanol dehydrogenase fromClostridium thermoautotrophicum. In: Jongejan JA & Duine JA (Eds) PQQ and quinoproteins (pp 35–39). Kluwer Academic Publishers, Dordrecht Boston LondonGoogle Scholar
  94. Wohlfarth G & Diekert G (1991) Thermodynamics of methylenetetrahydrofolate reduction to methyltetrahydrofolate and its implications for the energy metabolism of homoacetogenic bacteria. Arch. Microbiol. 155: 378–381Google Scholar
  95. Wohlfarth G, Geerligs G & Diekert G (1990) Purification and properties of a NADH dependent 5,10-methylenetetrahydrofolate reductase fromPeptostreptococcus productus. Eur. J. Biochem. 192: 411–417Google Scholar
  96. Wood HG (1952) A study of carbon dioxide fixation by mass determination of the types of C13-acetate. J. Biol. Chem. 194: 905–931Google Scholar
  97. Wood HG (1991) Life with CO or CO2 and H2 as a source of carbon and energy. FASEB J. 5: 156–163Google Scholar
  98. Yang H & Drake HL (1990) Differential effects of sodium on hydrogen-and glucose-dependent growth of the acetogenic bacteriumAcetogenium kivui. Appl. Environ. Microbiol. 56: 81–86Google Scholar
  99. Zeikus JG, Lynd LH, Thompson TE, Krzycki JA, Weimer PJ & Hegge PW (1980) Isolation and characterization of a new, methylotrophic, acidogenic anaerobe, the Marburg strain. Curr. Microbiol. 3: 381–386Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Gabriele Diekert
    • 1
  • Gert Wohlfarth
    • 1
  1. 1.Institut für MikrobiologieUniversität StuttgartStuttgartGermany

Personalised recommendations