Advertisement

Journal of engineering physics

, Volume 60, Issue 6, pp 693–697 | Cite as

Model of coal combustion in a fluidized bed and its experimental identification

  • A. I. Tamarin
Article

Abstract

The author has formulated a system of one-dimensional steady-state differential equations for the balance of oxidizer, fuel and energy in the diffusion approximation. The model of coal combustion in a fluidized bed is identified from the experimental data, and the unknown parameters of the model describing the rate of oxidation of fuel and the intensity of gas and fuel transfer in the bed are determined.

Keywords

Oxidation Experimental Data Combustion Differential Equation Statistical Physic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    E. P. Volkov, M. N. Egai, and R. Yu. Shakaryan, Inzh.-Fiz. Zh.,52, No. 2, 956–965 (1987).Google Scholar
  2. 2.
    V. A. Kolibabchuk and V. N. Orlik, Promysh. Teploenergetika,7, No. 1, 85–88 (1985).Google Scholar
  3. 3.
    V. I. Dikalenko, Problems of Heat and Mass Transfer in Boiler Plant and Chemical Reactors [in Russian], Minsk (1983), pp. 68–77.Google Scholar
  4. 4.
    A. I. Tamarin, Inzh.-Fiz. Zh.,50, No. 2, 260–266 (1986).Google Scholar
  5. 5.
    A. I. Tamarin and L. I. Levental', Inzh.-Fiz. Zh.,58, No. 4, 618–623 (1990).Google Scholar
  6. 6.
    V. V. Pomerantsev, K. M. Aref'ev, D. B. Akhmedov, et al., Fundamentals of Practical Combustion Theory [in Russian], Leningrad (1986).Google Scholar
  7. 7.
    L. I. Khitrin, Physics of Combustion and Explosions [in Russian], Moscow (1957).Google Scholar
  8. 8.
    G. I. Pal'chenok, and A. I. Tamarin, Inzh.-Fiz. Zh.,45, No. 3, 425–433 (1983).Google Scholar
  9. 9.
    G. I. Pal'chenok, and A. I. Tamarin, Inzh.-Fiz. Zh.,47, No. 2, 235–242 (1984).Google Scholar
  10. 10.
    A. I. Tamarin and Yu. S. Teplitskii, Inzh.-Fiz. Zh.,32, No. 3, 469–473 (1977).Google Scholar
  11. 11.
    A. I. Tamarin and Yu. E. Livshits, Inzh.-Fiz. Zh.,39, No. 4, 19–25 (1980).Google Scholar
  12. 12.
    A. I. Tamarin and Yu. E. Livshits, Vestsi Akad. Nauk BSSR, Ser. Fiz.-Energ. Nauk, No. 3, 129–130 (1977).Google Scholar
  13. 13.
    A. I. Tamarin and Yu. S. Teplitskii, Vestsi Akad. Nauk BSSR, Ser. Fiz.-Energ. Nauk, No. 1, 88–94 (1977).Google Scholar
  14. 14.
    A. Adzheyak, A. I. Tamarin, and K. E. Goryunov, Jnzynieria Chemiczna i Procesowa,4, No. 1, 45–52 (1983).Google Scholar
  15. 15.
    A. I. Tamarin, Yu. E. Livshits, D. M. Galershtein, et al., Problems of Heat and Mass Transfer in Heat Energy Equipment, Gas Generators and Chemical Reactors [in Russian], Minsk (1985), pp. 154–164.Google Scholar
  16. 16.
    A. I. Tamarin, L. I. Levental', D. M. Galershtein, et al., Problems of Heat and Mass Transfer in Heat Energy Installations with Disperse Systems [in Russian], Minsk (1985) pp. 37–42.Google Scholar
  17. 17.
    Rep. NPO TsKTI No. 062304/0-11703 [in Russian], Leningrad (1984).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • A. I. Tamarin
    • 1
  1. 1.A. V. Lykov Institute of Heat and Mass TransferAcademy of Sciences of the Belorussian SSRMinsk

Personalised recommendations