Advertisement

Journal of engineering physics

, Volume 50, Issue 1, pp 22–30 | Cite as

Loss of a passive impurity in a turbulent vortex ring

  • É. I. Andriankin
  • P. A. Pryadkin
Article
  • 16 Downloads

Abstract

A diffusion boundary-layer approximation is used to obtain an analytic solution to the problem of the loss of a passive impurity by a turbulent vortex ring.

Keywords

Vortex Statistical Physic Vortex Ring Turbulent Vortex Passive Impurity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    M. A. Lavrent'ev and B. V. Shabat, Problems of Hydrodynamics and Their Mathematical Models [in Russian], Nauka, Moscow (1977).Google Scholar
  2. 2.
    A. T. Onufriev, “Theory of motion of a ring under the influence of gravity. Rise of a cloud from a nuclear explosion,” Zh. Prikl. Mekh. Tekh. Fiz., No. 2, 3–15 (1967).Google Scholar
  3. 3.
    T. Maxworthy, “Some experimental studies of vortex rings,” J. Fluid Mech.,81, Pt. 3, 465–495 (1977).Google Scholar
  4. 4.
    A. A. Buzukov “Features of the formation and motion of circular vortices in water,” Zh. Prikl. Mekh. Tekh. Fiz., No. 2, 153–160 (1971).Google Scholar
  5. 5.
    A. Sommerfeld, Mechanics of Deformable Media [Russian translation], IL, Moscow (1954).Google Scholar
  6. 6.
    J. Okabe and S. Inoue, “The generation of vortex rings,” Rep. Res. Inst. Appl. Mech., Kynshu Univ.,8, No. 32, 91–101 (1960).Google Scholar
  7. 7.
    V. F. Tarasov, “Evaluation of certain parameters of a turbulent vortex ring,” Tr. Inst. Gidrodin. Sib. Otd. Akad. Nauk SSSR Dinam, Sp1. Sredy,14, Novosibirsk 120–127 (1973).Google Scholar
  8. 8.
    J. M. Richards, “Puff motions in unstratified surroundings,” J. Fluid Mech.,21, Pt. 1, 97–106 (1965).Google Scholar
  9. 9.
    A. A. Lugovtsov, B. A. Lugovtsov, and V. F. Tarasov, “Motion of a turbulent vortex ring,” Tr. Inst. Gidrodin. Sib. Otd. Akad. Nauk SSSR Dinam, Sp1. Sredy,3, Novosibirsk 50–60 (1969).Google Scholar
  10. 10.
    B. A. Lugovtsov, “Motion of a turbulent vortex ring and its transport of a passive impurity,” in: Some Problems of Mathematics and Mechanics [in Russian], Nauka, Leningrad (1970), pp. 182–189.Google Scholar
  11. 11.
    V. F. Tarasov, “Experimental investigations of turbulent vortex rings,” Physical Mathe-pmatical Sciences, Candidate's Dissertation, Novosibirsk (1975).Google Scholar
  12. 12.
    G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill (1967).Google Scholar
  13. 13.
    A. T. Onufriev and S. A. Kristianovich, “Features of turbulent motion in a vortex ring,” Dokl. Akad. Nauk SSSR,229, No. 1, 42–44 (1976).Google Scholar
  14. 14.
    A. T. Onufriev, “Phenomenological models of turbulence,” in: Aerodynamics and Physical Kinetics. Tr. Inst. Teor. Prikl. Mekh. Sib. Otd. Akad. Nauk SSSR, Novosibirsk (1977), pp. 43–66.Google Scholar
  15. 15.
    L. A. Vulis and V. P. Kashkarov, Theory of a Jet of a Viscous Fluid [in Russian], Nauka, Moscow (1965).Google Scholar
  16. 16.
    V. S. Krylov, “Diffusion boundary layer on the surface of a moving drop in the presence of a bulk chemical reaction,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 1, 146–149 (1967).Google Scholar
  17. 17.
    V. G. Levich, Physicochemical Hydrodynamics, Prentice-Hall (1972).Google Scholar
  18. 18.
    R. Mises, “Bermerkungen zur Hydrodynamik,” Z. Angew. Math. Mech.,7, 425–431 (1927).Google Scholar
  19. 19.
    A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics [in Russian], Nauka, Moscow.Google Scholar
  20. 20.
    D. W. Moore, “The velocity of rise of distorted gas bubbles in a liquid of small velocity,” J. Fluid Mech.,23, Pt. 4, 749–766 (1965).Google Scholar

Copyright information

© Plenum Publishing Corporation 1986

Authors and Affiliations

  • É. I. Andriankin
    • 1
  • P. A. Pryadkin
    • 1
  1. 1.Department of Theoretical ProblemsAcademy of Sciences of the USSRMoscow

Personalised recommendations