Advertisement

Journal of engineering physics

, Volume 51, Issue 1, pp 864–869 | Cite as

Numerical analysis of transfer phenomena in semiconductor devices and structures 1. Universal program for two-dimensional modeling

  • I. I. Abramov
  • V. V. Kharitonov
Article
  • 20 Downloads

Abstract

A universal program for the two-dimensional numerical analysis of functionally integrated structures of integral circuits is described.

Keywords

Statistical Physic Semiconductor Device Transfer Phenomenon Integral Circuit Universal Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    B. S. Pol'skii and L. S. Pokhvalina, “Numerical modeling of steady processes in bipolar semiconductor devices,” Izv. Vyssh. Uchebn. Zaved., Radioelektron.,25, No. 3, 44–49 (1982).Google Scholar
  2. 2.
    M. Tomizawa, H. Kitazawa, A. Yoshii, S. Horiguchi, and T. Sudo, “An accurate design method of bipolar devices using a two-dimensional device simulator,” IEEE Trans.,ED-28, No. 10, 1148–1153 (1981).Google Scholar
  3. 3.
    W. L. Engl, H. K. Dirks, and B. Meinerhagen, “Device modeling,” PIEEE,71, No. 1, 10–33 (1983).Google Scholar
  4. 4.
    I. I. Abramov, “Numerical modeling of invertors based on I2L elements, taking account of effects of the high doping level,” Izv. Vyssh. Uchebn. Zaved., Radioelektron.27, No. 8, 16–22 (1984).Google Scholar
  5. 5.
    I. I. Abramov and V. V. Kharitonov, “Numerical analysis of transfer phenomena in semiconductor devices and structures. 1, 2” Inzh.-Fiz. Zh.,44, No. 2, 284–293; No. 3, 474–480 (1983).Google Scholar
  6. 6.
    D. M. Caughey and R. E. Thomas, “Carrier mobilities in silicon empirically related to doping and field,” PIEEE,55, No. 12, 2192–2193 (1967).Google Scholar
  7. 7.
    Khechtel, Dzhoi, and Kuli, “A new program of one-dimensional analysis for modeling plane semiconductor devices,” in: Automation in Design [Russian translation], Mir, Moscow (1972), pp. 122–123.Google Scholar
  8. 8.
    M. S. Adler and V. A. K. Temple, “Accurate calculations of the forward drop of power rectifiers and thyristors,” in: International Electronic Devices Melting, Washington (1976), pp. 499–503.Google Scholar
  9. 9.
    A. A. Vol'fson and V. K. Subashiev, “Intrinsic-absorption edge of silicon strongly doped with donor or acceptor impurities,” Fiz. Tekh. Poluprovodn.,1, No. 3, 397–403 (1967).Google Scholar
  10. 10.
    J. W. Slotboom and H. C. DeGraaff, “Measurements of bandgap narrowing in Si bipolar transistors,” Solid-State Electron.,19, No. 10, 857–862 (1976).Google Scholar
  11. 11.
    H. P. D. Lanyon and R. A. Tuft, “Bandgap narrowing in moderately to heavily doped silicon, “ IEEE Trans.,ED-26, No. 7, 1014–1018 (1979).Google Scholar
  12. 12.
    G. I. Marchuk, Methods of Computational Mathematics [in Russian], Nauka, Moscow (1977).Google Scholar
  13. 13.
    D. L. Sharfetter and H. K. Gummel, “Large-signal analysis of a silicon Read diode oscillator, ” IEEE Trans.,ED-16, No. 1, 64–77 (1969).Google Scholar
  14. 14.
    I. I. Abramov, “Approximation of the Poisson equation in the problem of numerical analysis of semiconductor devices,” Izv. Vyssh. Uchebn. Zaved., Radioelektron.,27, No.6, 107–109 (1984).Google Scholar
  15. 15.
    S. G. Mulyarchik and I. I. Abramov, “Choice of initial approximation in the problem of numerical analysis of bipolar semiconductor devices,” Izv. Vyssh. Uchebn. Zaved., Radioelektron.,24, No. 3, 49–56 (1981).Google Scholar
  16. 16.
    M. S. Mock, “On the convergence of Gummel's numerical algorithm,” Solid-State Electron.,15, No. 1, 1–4 (1972).Google Scholar
  17. 17.
    T. I. Seidman and S. C. Choo, “Iterative scheme for computer simulation of semiconductor devices,” Solid-State Electron.,15, No. 10, 1229–1235 (1972).Google Scholar
  18. 18.
    I. I. Abramov and S. G. Mulyarchik, “Method of vector relaxation of systems in problems of multidimensional numerical analysis of semiconductor devices,” Izv. Vyssh. Uchebn. Zaved., Radioelektron.,24, No. 6, 59–67 (1981).Google Scholar
  19. 19.
    G. W. Brown and B. W. Lindsay, “The numerical solution of Poisson's equation for two-dimensional semiconductor devices,” Solid-State Electron.,19, No. 12, 991–992 (1976).Google Scholar
  20. 20.
    Yu. V. Rakitskii, S. M. Ustinov, and I. G. Chernorutskii, Numerical Methods of Solving Rigid Systems [in Russian], Nauka, Moscow (1979).Google Scholar
  21. 21.
    D. Potter, Computational Methods in Physics [Russian translation], Mir, Moscow (1975).Google Scholar
  22. 22.
    N. I. Buleev, “Numerical method of solving two-dimensional and three-dimensional diffusion equations,” Mat. Sb., Nov. Ser., 51(93), No. 2, 227–238 (1960).Google Scholar
  23. 23.
    H. L. Stone, “Iterative solution of implicit approximation of multidimensional partial difference equations,” SIAM J. Numer. Anal.,5, Sept., 530–558 (1968).Google Scholar
  24. 24.
    L. N. Korolev, Structure of Computers and Their Software [in Russian], Nauka, Moscow (1978).Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • I. I. Abramov
    • 1
  • V. V. Kharitonov
    • 1
  1. 1.Belorussian Institute of Railroad EngineersGomel'

Personalised recommendations