Advertisement

Antonie van Leeuwenhoek

, Volume 63, Issue 3–4, pp 275–288 | Cite as

Carbohydrate transport in bacteria under environmental conditions, a black box?

  • J. W. Lengeler
A Glimpse Towards Nature

Abstract

A typical eubacterium carries a battery of substrate transport systems which are the ultimate pacemakers for growth. These systems reflect a billion year old selection for coping with rapidly changing conditions in the environment and each of them is optimised for specific growth conditions. Metabolic pathways in combination with transport systems can be interpreted as transient sensory systems, where a transport system corresponds to a sensor for external stimuli. Characteristic is a tightly linked common control between a carbohydrate metabolic pathway and the corresponding transport system. Many of the observed growth phenomena are a direct result of adaptation and regulation of transport capacity to rapid changes in environmental conditions. Some of the better understood examples are discussed. Nevertheless, knowledge on bacterial carbohydrate transport under environmental conditions as documented in the literature is still scarce.

Key words

carbohydrate transport bacteria strategies environment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amabile-Cuevas CF & Chicurel ME (1992) Bacterial plasmids and gene flux. Cell 70: 189–199PubMedGoogle Scholar
  2. Ames GF-L (1990) Energy coupling in bacterial periplasmic permeases. J. Bacteriol. 172: 4133–4137PubMedGoogle Scholar
  3. Barnell WO, Liu J, Hesman TL, O'Neill MC & Conway T (1992) TheZymomonas mobilis glf, zwf, edd, andglk genes form an operon: localization of the promoter and identification of a conserved sequence in the regulatory region. J. Bacteriol. 174: 2816–2823PubMedGoogle Scholar
  4. Bockmann J, Heuel H & Lengeler JW (1992) Characterization of a chromosomally encoded, non-PTS metabolic pathway for sucrose utilization inEscherichia coli EC3132. Mol. Gen. Genet. 235: 22–32PubMedGoogle Scholar
  5. Brock TD & Madigan MT (1991) Biology of Microorganisms, 6th ed. Prentice Hall International, Englewood Cliffs, NJGoogle Scholar
  6. Button DK (1985) Kinetics of nutrient-limited transport and microbial growth. Microbiol. Rev. 49: 270–279Google Scholar
  7. Cooper RA (1986) Convergent pathways of sugar catabolism in bacteria. In: Morgan MJ (Ed) Carbohydrate Metabolism in Cultured Cells (pp 461–491). Plenum, LondonGoogle Scholar
  8. Costerton JW, Cheng KJ, Geesey GG, Ladd TL, Nickel JC, Dasgupta M & Marrie TJ (1987) Bacterial biofilms in nature and disease. Annu. Rev. Microbiol. 41: 435–464PubMedGoogle Scholar
  9. Dawes EA (1991) Storage Polymers in Prokaryotes. In: Mohan S, Dow C & Cole JA (Eds) Prokaryotic structure and function: a new perspective (pp 81–122). Cambridge University Press, UKGoogle Scholar
  10. Dean AM (1989) Selection and neutrality in lactose operons ofEscherichia coli. Genetics 123: 441–454PubMedGoogle Scholar
  11. Dimroth P (1990) Mechanisms of sodium transport in bacteria. Phil. Trans. R. Soc. Lond. B 326: 465–477Google Scholar
  12. Fisher SH & Sonenshein AL (1991) Control of carbon and nitrogen metabolism inBacillus subtilis. Annu. Rev. Microbiol. 45: 107–135PubMedGoogle Scholar
  13. Foster PL (1992) Directed mutation: between unicorns and goats. J. Bacteriol. 174: 1711–1716PubMedGoogle Scholar
  14. Gottesman S (1984) Bacterial regulation: global regulatory networks. Annu. Rev. Genet. 18: 415–442PubMedGoogle Scholar
  15. Hall BG (1991) Increased rates of advantageous mutations in response to environmental challenges. Amer. Soc. Microbiol. News 57: 82–87Google Scholar
  16. Harder W & Dijkhuizen L (1983) Physiological responses to nutrient limitation. Annu. Rev. Microbiol. 37: 1–23PubMedGoogle Scholar
  17. Hartl DL (1989) Evolving theories of enzyme evolution. Genetics 122: 1–6PubMedGoogle Scholar
  18. Hartl DL & Dykhuizen DE (1984) The population genetics ofEscherichia coli. Annu. Rev. Genet. 18: 31–68PubMedGoogle Scholar
  19. Hecker M & Babel W (1988) Physiologie der Mikroorganismen. VEB Gustav Fischer Verlag, JenaGoogle Scholar
  20. Henderson PJF (1990) Proton-linked sugar transport systems in bacteria. J. Bioenerg. Biomembr. 22: 525–569PubMedGoogle Scholar
  21. Kaback HR (1990) Lac permease ofEscherichia coli: on the path of the proton. Phil. Trans. R. Soc. Lond. B 326: 425–436Google Scholar
  22. Kjelleberg S, Hermansson M & Marden P (1987) The transient phase between growth and non-growth of heterotrophic bacteria, with emphasis on the marine environment. Annu. Rev. Microbiol. 41: 25–49PubMedGoogle Scholar
  23. Koch AL (1987) WhyEscherichia coli should be renamedEscherichia ilei. In: Torriani-Gorini A, Rothman FG, Silver S, Wright A & Yagil E (Eds) Phosphate Metabolism and Cellular Regulation in Microorganisms (pp 300–307). American Soc. Microbiol. Washington D.C., USAGoogle Scholar
  24. Kornberg HL & Henderson PJF (1990) Microbial membrane transport systems. Phil. Trans. R. Soc. Lond. B 326: 341–513Google Scholar
  25. Krulwich TA (1990) Bacterial Energetics. The Bacteria, Vol XII. Academic Press, San Diego, USAGoogle Scholar
  26. Lengeler J, Auburger A-M, Mayer R & Pecher A (1981) The phosphoenolpyruvate-dependent carbohydrate: phospho-transferase system enzymes II as chemoreceptors in chemotaxis ofEscherichia coli K12. Mol. Gen. Genet. 183: 163–170PubMedGoogle Scholar
  27. Lengeler JW (1975) Nature and properties of hexitol transport systems inEscherichia coli. J. Bacteriol. 124: 39–47PubMedGoogle Scholar
  28. Lengeler JW & Lin ECC (1972) Reversal of the mannitol-sorbitol diauxie inEscherichia coli. J. Bacteriol. 112: 840–848PubMedGoogle Scholar
  29. Lessie TG & Phibbs Jr PV (1984) Alternative pathways of carbohydrate utilisation inPseudomonas. Annu. Rev. Microbiol. 38: 359–388PubMedGoogle Scholar
  30. Lin ECC (1987) Dissimilatory pathways for sugars, polyols and carboxylates. In: Neidhardt FC (Ed in chief)Escherichia coli andSalmonella typhimurium, Vol I (pp 244–284) American Soc. Microbiol., Washington D.C., USAGoogle Scholar
  31. Lin ECC & Iuchi S (1991) Regulation of gene expression in fermentative and respiratory systems inEscherichia coli and related bacteria. Annu. Rev. Genet. 25: 361–387PubMedGoogle Scholar
  32. Magasanik B (1961) Catabolite Repression. Cold Spring Harbor Symposium on Quant. Biology 26: 249–256Google Scholar
  33. Maloney PC, Ambudkar SV, Anantharam V, Sonny LA & Veradhachary A (1990) Anion-exchange mechanisms in bacteria. Microbiol. Rev. 54: 1–17PubMedGoogle Scholar
  34. Matin A (1991) The molecular basis of carbon-starvation-induced general resistance inEscherichia coli. Molec. Microbiol. 5: 3–10Google Scholar
  35. Meadow ND, Fox DK & Roseman S (1990) The bacterial phosphoenolpyruvate: glycose phosphotransferase system. Annu. Rev. Biochem. 59: 491–542Google Scholar
  36. Monod J (1942) Recherche sur la Croissance des Cultures Bactériennes, Hermann et Cie, ParisGoogle Scholar
  37. Mortlock RP (1982) Metabolic acquisition through laboratory selection. Annu. Rev. Microbiol. 36: 259–284PubMedGoogle Scholar
  38. Müller-Hill B, Rickenberg HV & Wallenfels K (1964) Specificity of the induction of the enzymes of thelac operon inEscherichia coli. J. Molec. Biol. 10: 303–318PubMedGoogle Scholar
  39. Nikaido H (1992) Porins and specific channels of bacterial outer membranes. Molec. Microbiol. 6: 435–442Google Scholar
  40. Poolman B (1990) Precursor/product antiport in bacteria. Molec. Microbiol. 4: 1629–1636Google Scholar
  41. Postma PW & Lengeler JW (1985) Phosphoenolpyruvate; carbohydrate phosphotransferase system of bacteria. Microbiol. Rev. 49: 232–269PubMedGoogle Scholar
  42. Postma PW, Lengeler JW & Jacobson G (1993) Phosphoenolpyruvate: carbohydrate phosphotransferase systems in bacteria. Microbiol. Rev. (in press)Google Scholar
  43. Postma PW, Ruijter GJG, van der Vlag J & van Dam K (1992) Control of carbohydrate metabolism in enteric bacteria: qualitative and quantitative aspects. In: Quagliariello E & Palmieri F (Eds) Developments in Biochemistry 29: 97–105Google Scholar
  44. Quagliariello E & Palmieri F (1992) Molecular mechanisms of transport. Developments in Biochemistry, Vol 29. Elsevier Science Publ., AmsterdamGoogle Scholar
  45. Roseman S (1969) The transport of carbohydrates by a bacterial phosphotransferase system. J. Gen. Physiol. 54: 138s-180sGoogle Scholar
  46. Saier Jr MH (1989) Protein phosphorylation and allosteric control of inducer exclusion and catabolite repression by the bacterial phosphoenolpyruvate: sugar phosphotransferase system. Microbiol. Rev. 53: 109–120PubMedGoogle Scholar
  47. Saier Jr MH & Chin AM (1990) Energetics of the bacterial phosphotransferase system in sugar transport and the regulation of carbon metabolism. In: Krulwich TA (Ed) The Bacteria, Vol XII (pp 273–299). Acad. Press Inc., San DiegoGoogle Scholar
  48. Saier Jr MH & Reizer J (1991) Gene families and evolution: families and super families of transport proteins common to prokaryotes and eukaryotes. Curr. Opin. Struct. Biol. 1: 362–368Google Scholar
  49. Schmid K, Ebner R, Altenbuchner J, Schmitt R & Lengeler JW (1988) Plasmid-mediated sucrose metabolism inEscherichia coli K-12: mapping of thescr genes of pUR400. Molec. Microbiol. 2: 1–8Google Scholar
  50. Schmid K, Ebner R, Jahreis K, Lengeler JW & Titgemeyer F (1991) A sugar specific porin Scr Y is involved in sugar uptake of enteric bacteria. Molec. Microbiol. 5: 941–950Google Scholar
  51. Selander RK, Caugant DA & Whittam TS (1987) Genetic structure and variation in natural populations ofEscherichia coli. In: Neidhardt FC (Ed in chief)Escherichia coli andSalmonella typhimurium, Vol II (pp 1625–1648). American Soc. Microbiol., Washington D.C., USAGoogle Scholar
  52. Shapiro JA (1991) Multicellular behaviour of bacteria. Amer. Soc. Microbiol. News 57: 247–253Google Scholar
  53. Sprenger GA & Lengeler JW (1987) Mapping of thesor genes for L-sorbose degradation in the chromosome ofKlebsiella pneumoniae. Mol. Gen. Genet. 209: 352–359PubMedGoogle Scholar
  54. Stock JB, Ninfa AJ & Stock AM (1989) Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol. Rev. 53: 450–490PubMedGoogle Scholar
  55. Stolp H (1988) Microbial Ecology; Organisms, Habitats, Activities. Cambridge University Press, CambridgeGoogle Scholar
  56. Stowers M (1985) Carbon metabolism inRhizobium species. Annu. Rev. Microbiol. 39: 89–108PubMedGoogle Scholar
  57. Tsen S (1990) Increase in the catalytic rate of β-galactosidase by selection in chemostats at changing dilution rates. Biochem. Biophys. Res. Commun. 166: 1245–1250PubMedGoogle Scholar
  58. Van Dam K, Jansen N, Postma P, Richard P, Ruijter G, Rutgers M, Smits HP, Tensink B, van der Vlag J, Walsh M & Westerhoff HV (1993) Control and regulation of metabolic fluxes in microbes by substrates and enzymes. Antonie van Leeuwenhoek (this issue)Google Scholar
  59. Vogler AP & Lengeler JW (1989) Analysis of thenag regulon fromEscherichia coli K12 andKlebsiella pneumoniae and of its regulation. Mol. Gen. Genet. 219: 97–105PubMedGoogle Scholar
  60. Vogler AP, Trentmann S & Lengeler JW (1989) Alternative route for biosynthesis of amino sugars inEscherichia coli K-12 mutants by means of a catabolic isomerase. J. Bacteriol. 171: 6586–6592PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1993

Authors and Affiliations

  • J. W. Lengeler
    • 1
  1. 1.Fachbereich Biologie/ChemieUniversität OsnabrückOsnabrückGermany

Personalised recommendations