Skip to main content
Log in

Carbohydrate transport in bacteria under environmental conditions, a black box?

  • A Glimpse Towards Nature
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A typical eubacterium carries a battery of substrate transport systems which are the ultimate pacemakers for growth. These systems reflect a billion year old selection for coping with rapidly changing conditions in the environment and each of them is optimised for specific growth conditions. Metabolic pathways in combination with transport systems can be interpreted as transient sensory systems, where a transport system corresponds to a sensor for external stimuli. Characteristic is a tightly linked common control between a carbohydrate metabolic pathway and the corresponding transport system. Many of the observed growth phenomena are a direct result of adaptation and regulation of transport capacity to rapid changes in environmental conditions. Some of the better understood examples are discussed. Nevertheless, knowledge on bacterial carbohydrate transport under environmental conditions as documented in the literature is still scarce.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Amabile-Cuevas CF & Chicurel ME (1992) Bacterial plasmids and gene flux. Cell 70: 189–199

    PubMed  Google Scholar 

  • Ames GF-L (1990) Energy coupling in bacterial periplasmic permeases. J. Bacteriol. 172: 4133–4137

    PubMed  Google Scholar 

  • Barnell WO, Liu J, Hesman TL, O'Neill MC & Conway T (1992) TheZymomonas mobilis glf, zwf, edd, andglk genes form an operon: localization of the promoter and identification of a conserved sequence in the regulatory region. J. Bacteriol. 174: 2816–2823

    PubMed  Google Scholar 

  • Bockmann J, Heuel H & Lengeler JW (1992) Characterization of a chromosomally encoded, non-PTS metabolic pathway for sucrose utilization inEscherichia coli EC3132. Mol. Gen. Genet. 235: 22–32

    PubMed  Google Scholar 

  • Brock TD & Madigan MT (1991) Biology of Microorganisms, 6th ed. Prentice Hall International, Englewood Cliffs, NJ

    Google Scholar 

  • Button DK (1985) Kinetics of nutrient-limited transport and microbial growth. Microbiol. Rev. 49: 270–279

    Google Scholar 

  • Cooper RA (1986) Convergent pathways of sugar catabolism in bacteria. In: Morgan MJ (Ed) Carbohydrate Metabolism in Cultured Cells (pp 461–491). Plenum, London

    Google Scholar 

  • Costerton JW, Cheng KJ, Geesey GG, Ladd TL, Nickel JC, Dasgupta M & Marrie TJ (1987) Bacterial biofilms in nature and disease. Annu. Rev. Microbiol. 41: 435–464

    PubMed  Google Scholar 

  • Dawes EA (1991) Storage Polymers in Prokaryotes. In: Mohan S, Dow C & Cole JA (Eds) Prokaryotic structure and function: a new perspective (pp 81–122). Cambridge University Press, UK

    Google Scholar 

  • Dean AM (1989) Selection and neutrality in lactose operons ofEscherichia coli. Genetics 123: 441–454

    PubMed  Google Scholar 

  • Dimroth P (1990) Mechanisms of sodium transport in bacteria. Phil. Trans. R. Soc. Lond. B 326: 465–477

    Google Scholar 

  • Fisher SH & Sonenshein AL (1991) Control of carbon and nitrogen metabolism inBacillus subtilis. Annu. Rev. Microbiol. 45: 107–135

    PubMed  Google Scholar 

  • Foster PL (1992) Directed mutation: between unicorns and goats. J. Bacteriol. 174: 1711–1716

    PubMed  Google Scholar 

  • Gottesman S (1984) Bacterial regulation: global regulatory networks. Annu. Rev. Genet. 18: 415–442

    PubMed  Google Scholar 

  • Hall BG (1991) Increased rates of advantageous mutations in response to environmental challenges. Amer. Soc. Microbiol. News 57: 82–87

    Google Scholar 

  • Harder W & Dijkhuizen L (1983) Physiological responses to nutrient limitation. Annu. Rev. Microbiol. 37: 1–23

    PubMed  Google Scholar 

  • Hartl DL (1989) Evolving theories of enzyme evolution. Genetics 122: 1–6

    PubMed  Google Scholar 

  • Hartl DL & Dykhuizen DE (1984) The population genetics ofEscherichia coli. Annu. Rev. Genet. 18: 31–68

    PubMed  Google Scholar 

  • Hecker M & Babel W (1988) Physiologie der Mikroorganismen. VEB Gustav Fischer Verlag, Jena

    Google Scholar 

  • Henderson PJF (1990) Proton-linked sugar transport systems in bacteria. J. Bioenerg. Biomembr. 22: 525–569

    PubMed  Google Scholar 

  • Kaback HR (1990) Lac permease ofEscherichia coli: on the path of the proton. Phil. Trans. R. Soc. Lond. B 326: 425–436

    Google Scholar 

  • Kjelleberg S, Hermansson M & Marden P (1987) The transient phase between growth and non-growth of heterotrophic bacteria, with emphasis on the marine environment. Annu. Rev. Microbiol. 41: 25–49

    PubMed  Google Scholar 

  • Koch AL (1987) WhyEscherichia coli should be renamedEscherichia ilei. In: Torriani-Gorini A, Rothman FG, Silver S, Wright A & Yagil E (Eds) Phosphate Metabolism and Cellular Regulation in Microorganisms (pp 300–307). American Soc. Microbiol. Washington D.C., USA

    Google Scholar 

  • Kornberg HL & Henderson PJF (1990) Microbial membrane transport systems. Phil. Trans. R. Soc. Lond. B 326: 341–513

    Google Scholar 

  • Krulwich TA (1990) Bacterial Energetics. The Bacteria, Vol XII. Academic Press, San Diego, USA

    Google Scholar 

  • Lengeler J, Auburger A-M, Mayer R & Pecher A (1981) The phosphoenolpyruvate-dependent carbohydrate: phospho-transferase system enzymes II as chemoreceptors in chemotaxis ofEscherichia coli K12. Mol. Gen. Genet. 183: 163–170

    PubMed  Google Scholar 

  • Lengeler JW (1975) Nature and properties of hexitol transport systems inEscherichia coli. J. Bacteriol. 124: 39–47

    PubMed  Google Scholar 

  • Lengeler JW & Lin ECC (1972) Reversal of the mannitol-sorbitol diauxie inEscherichia coli. J. Bacteriol. 112: 840–848

    PubMed  Google Scholar 

  • Lessie TG & Phibbs Jr PV (1984) Alternative pathways of carbohydrate utilisation inPseudomonas. Annu. Rev. Microbiol. 38: 359–388

    PubMed  Google Scholar 

  • Lin ECC (1987) Dissimilatory pathways for sugars, polyols and carboxylates. In: Neidhardt FC (Ed in chief)Escherichia coli andSalmonella typhimurium, Vol I (pp 244–284) American Soc. Microbiol., Washington D.C., USA

    Google Scholar 

  • Lin ECC & Iuchi S (1991) Regulation of gene expression in fermentative and respiratory systems inEscherichia coli and related bacteria. Annu. Rev. Genet. 25: 361–387

    PubMed  Google Scholar 

  • Magasanik B (1961) Catabolite Repression. Cold Spring Harbor Symposium on Quant. Biology 26: 249–256

    Google Scholar 

  • Maloney PC, Ambudkar SV, Anantharam V, Sonny LA & Veradhachary A (1990) Anion-exchange mechanisms in bacteria. Microbiol. Rev. 54: 1–17

    PubMed  Google Scholar 

  • Matin A (1991) The molecular basis of carbon-starvation-induced general resistance inEscherichia coli. Molec. Microbiol. 5: 3–10

    Google Scholar 

  • Meadow ND, Fox DK & Roseman S (1990) The bacterial phosphoenolpyruvate: glycose phosphotransferase system. Annu. Rev. Biochem. 59: 491–542

    Google Scholar 

  • Monod J (1942) Recherche sur la Croissance des Cultures Bactériennes, Hermann et Cie, Paris

    Google Scholar 

  • Mortlock RP (1982) Metabolic acquisition through laboratory selection. Annu. Rev. Microbiol. 36: 259–284

    PubMed  Google Scholar 

  • Müller-Hill B, Rickenberg HV & Wallenfels K (1964) Specificity of the induction of the enzymes of thelac operon inEscherichia coli. J. Molec. Biol. 10: 303–318

    PubMed  Google Scholar 

  • Nikaido H (1992) Porins and specific channels of bacterial outer membranes. Molec. Microbiol. 6: 435–442

    Google Scholar 

  • Poolman B (1990) Precursor/product antiport in bacteria. Molec. Microbiol. 4: 1629–1636

    Google Scholar 

  • Postma PW & Lengeler JW (1985) Phosphoenolpyruvate; carbohydrate phosphotransferase system of bacteria. Microbiol. Rev. 49: 232–269

    PubMed  Google Scholar 

  • Postma PW, Lengeler JW & Jacobson G (1993) Phosphoenolpyruvate: carbohydrate phosphotransferase systems in bacteria. Microbiol. Rev. (in press)

  • Postma PW, Ruijter GJG, van der Vlag J & van Dam K (1992) Control of carbohydrate metabolism in enteric bacteria: qualitative and quantitative aspects. In: Quagliariello E & Palmieri F (Eds) Developments in Biochemistry 29: 97–105

    Google Scholar 

  • Quagliariello E & Palmieri F (1992) Molecular mechanisms of transport. Developments in Biochemistry, Vol 29. Elsevier Science Publ., Amsterdam

    Google Scholar 

  • Roseman S (1969) The transport of carbohydrates by a bacterial phosphotransferase system. J. Gen. Physiol. 54: 138s-180s

    Google Scholar 

  • Saier Jr MH (1989) Protein phosphorylation and allosteric control of inducer exclusion and catabolite repression by the bacterial phosphoenolpyruvate: sugar phosphotransferase system. Microbiol. Rev. 53: 109–120

    PubMed  Google Scholar 

  • Saier Jr MH & Chin AM (1990) Energetics of the bacterial phosphotransferase system in sugar transport and the regulation of carbon metabolism. In: Krulwich TA (Ed) The Bacteria, Vol XII (pp 273–299). Acad. Press Inc., San Diego

    Google Scholar 

  • Saier Jr MH & Reizer J (1991) Gene families and evolution: families and super families of transport proteins common to prokaryotes and eukaryotes. Curr. Opin. Struct. Biol. 1: 362–368

    Google Scholar 

  • Schmid K, Ebner R, Altenbuchner J, Schmitt R & Lengeler JW (1988) Plasmid-mediated sucrose metabolism inEscherichia coli K-12: mapping of thescr genes of pUR400. Molec. Microbiol. 2: 1–8

    Google Scholar 

  • Schmid K, Ebner R, Jahreis K, Lengeler JW & Titgemeyer F (1991) A sugar specific porin Scr Y is involved in sugar uptake of enteric bacteria. Molec. Microbiol. 5: 941–950

    Google Scholar 

  • Selander RK, Caugant DA & Whittam TS (1987) Genetic structure and variation in natural populations ofEscherichia coli. In: Neidhardt FC (Ed in chief)Escherichia coli andSalmonella typhimurium, Vol II (pp 1625–1648). American Soc. Microbiol., Washington D.C., USA

    Google Scholar 

  • Shapiro JA (1991) Multicellular behaviour of bacteria. Amer. Soc. Microbiol. News 57: 247–253

    Google Scholar 

  • Sprenger GA & Lengeler JW (1987) Mapping of thesor genes for L-sorbose degradation in the chromosome ofKlebsiella pneumoniae. Mol. Gen. Genet. 209: 352–359

    PubMed  Google Scholar 

  • Stock JB, Ninfa AJ & Stock AM (1989) Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol. Rev. 53: 450–490

    PubMed  Google Scholar 

  • Stolp H (1988) Microbial Ecology; Organisms, Habitats, Activities. Cambridge University Press, Cambridge

    Google Scholar 

  • Stowers M (1985) Carbon metabolism inRhizobium species. Annu. Rev. Microbiol. 39: 89–108

    PubMed  Google Scholar 

  • Tsen S (1990) Increase in the catalytic rate of β-galactosidase by selection in chemostats at changing dilution rates. Biochem. Biophys. Res. Commun. 166: 1245–1250

    PubMed  Google Scholar 

  • Van Dam K, Jansen N, Postma P, Richard P, Ruijter G, Rutgers M, Smits HP, Tensink B, van der Vlag J, Walsh M & Westerhoff HV (1993) Control and regulation of metabolic fluxes in microbes by substrates and enzymes. Antonie van Leeuwenhoek (this issue)

  • Vogler AP & Lengeler JW (1989) Analysis of thenag regulon fromEscherichia coli K12 andKlebsiella pneumoniae and of its regulation. Mol. Gen. Genet. 219: 97–105

    PubMed  Google Scholar 

  • Vogler AP, Trentmann S & Lengeler JW (1989) Alternative route for biosynthesis of amino sugars inEscherichia coli K-12 mutants by means of a catabolic isomerase. J. Bacteriol. 171: 6586–6592

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lengeler, J.W. Carbohydrate transport in bacteria under environmental conditions, a black box?. Antonie van Leeuwenhoek 63, 275–288 (1993). https://doi.org/10.1007/BF00871223

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00871223

Key words

Navigation