Journal of engineering physics

, Volume 51, Issue 2, pp 921–927 | Cite as

Some properties of the heat-transfer process in a compressed gas with consideration of thermal flux relaxation

  • E. I. Levanov
  • E. N. Sotskii


Some solutions of the gas dynamics equations with thermal conductivity are examined with consideration of thermal flux relaxation and nonlinear dependence of the thermal conductivity coefficient and thermal flux relaxation time on temperature and density of the medium.


Thermal Conductivity Statistical Physic Relaxation Time Dynamic Equation Nonlinear Dependence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    J. C. Maxwell, “On the dynamical theory of gases,” Philos. Trans. R. Soc. London,157, 49–88 (1867).Google Scholar
  2. 2.
    V. N. Kukudzhanov, “Numerical solution of non-one-dimensional problems of stress wave propagation in solids,” Tr. VTs Akad. Nauk SSSR, No. 6 (1976).Google Scholar
  3. 3.
    A. E. Osokin and Yu. V. Suvorova, “Some thermal conductivity problems for hereditarily elastic maerials,” Izv. Akad. Nauk SSSR, Mashinoved., No. 1, 87–92 (1983).Google Scholar
  4. 4.
    P. Vernotte, “Les paradoxes de la theorie continue de l'equation de la chaleur,” C. R., Acad. Sci. (Paris), 246, No. 22, 3154–3155 (1958).Google Scholar
  5. 5.
    C. Cattaneo, “Sur une forme de l'equation de la chaleur eliminant le paradoxe d'une propagation instantee,” C. R., Acad. Sci. (Paris),247, No. 4, 431–433 (1958).Google Scholar
  6. 6.
    A. V. Lykov, “Use of the methods of thermodynamics of irreversible processes in heat and mass exchange studies,” Inzh.-Fiz. Zh.,9, No. 3, 287–304 (1965).Google Scholar
  7. 7.
    A. D. Khon'kin, “Equations of hydrodynamics of rapid processes,” Dokl. Akad. Nauk SSSR,210, No. 5, 1033–1035 (1973).Google Scholar
  8. 8.
    A. D. Khon'kin, “The paradox of infinite perturbation propagation velocity in hydrodynamics of a viscous thermally conductive medium and the hydrodynamics equations for rapid processes,” in: Aeromechanics [in Russian], Nauka, Moscow (1976), pp. 289–299.Google Scholar
  9. 9.
    Ya. S. Podstrigach and Yu. M. Kolyano, Generalized Thermomechanics [in Russian], Naukova Dumka, Kiev (1976).Google Scholar
  10. 10.
    R. Gutfel'd, “Thermal pulse propagation,” in: W. Mason (ed.), Physical Acoustics, Vol. 5, [Russian translation], Mir, Moscow (1973), pp. 267–329.Google Scholar
  11. 11.
    G. A. Moses and J. J. Duderstadt, “Improved treatment of electron thermal conduction in plasma hydrodynamics calculations,” Phys. Fluids,20, No. 5, 762–770 (1977).Google Scholar
  12. 12.
    T. Okada, T. Yabe, and K. Niu, “Thermal flux reduction by electromagnetic instabilities,” J. Plasma Phys.,20, No. 3, 405–417 (1978).Google Scholar
  13. 13.
    S. H. Choi and H. E. Wilhelm, “Similarity transformations for explosions in two-component plasmas with thermal energy and heat flux relaxation,” Phys. Rev. A,14, No. 5, 1825–1834 (1976).Google Scholar
  14. 14.
    V. I. Kosarev, E. I. Levanov, and E. N. Sotskii, “A method for describing the electron thermal conductivity process in high-temperature plasma,” Preprint No. 142, IPM Akad. Nauk SSSR, Moscow (1981).Google Scholar
  15. 15.
    V. A. Bubnov, “Notes on the wave equations of thermal conductivity theory,” in: Problems in Heat and Mass Transport [in Russian], Nauka i Tekhnika, Minsk (1976), pp. 168–175.Google Scholar
  16. 16.
    K. Baumeister and T. Khamill, “Hyperbolic thermal conductivity equation. Solution of the problem of a semiinfinite body,” Teploperedach., No. 4, 112–119 (1969).Google Scholar
  17. 17.
    H. E. Wilhelm and S. H. Choi, “Nonlinear hyperbolic theory of thermal waves in metals,” J. Chem. Phys.,63, No. 5, 2199–2123 (1975).Google Scholar
  18. 18.
    P. P. Volosevich, S. P. Kurdyumov, L. N. Busurina, and V. P. Krus, “Solution of the one-dimensional planar problem of piston motion in a ideal thermally conductive gas,” Zh. Vychisl. Mat. Mat. Fiz.,3, No. 1, 159–169 (1963).Google Scholar
  19. 19.
    P. P. Volosevich, E. I. Levanov, and V. I. Maslyankin, Self-Similar Gas Dynamics Problems [in Russian], MFTI, Moscow (1984).Google Scholar
  20. 20.
    P. P. Volosevich and E. I. Levanov, “Some self-similar problems in gas dynamics with consideration of additional nonlinear effects,” Diff. Uravn.,17, No. 7, 1200–1213 (1981).Google Scholar
  21. 21.
    A. A. Samarskii, S. P. Kurdyumov, and P. P. Volosevich, “Traveling waves in a medium with nonlinear thermal conductivity,” Zh. Vychisl. Mat. Mat. Fiz.,5, No. 2, 199–217 (1965).Google Scholar
  22. 22.
    S. P. Kurdyumov, “Study of the interaction of hydrodynamic and nonlinear thermal processes with the aid of travelling waves,” Preprints No. 55, 56, IPM Akad. Nauk SSSR, Moscow (1971).Google Scholar
  23. 23.
    I. V. Nemchinov, “Disperson of a heat gas mass in a regular regime,” Zh. Prikl. Mekh. Tekh. Fiz., No. 5, 18–19 (1964).Google Scholar
  24. 24.
    K. V. Brushlinskii and Ya. M. Kazhdan, “Self-similar solutions of some gas dynamics problems,” Usp. Mat. Nauk,18, No. 2, 3–23 (1963).Google Scholar
  25. 25.
    E. I. Levanov and E. N. Sotskii, “Traveling waves in a medium with hyperbolic type thermal conductivity,” Preprint No. 193, IPM Akad. Nauk SSSR, Moscow (1982).Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • E. I. Levanov
    • 1
  • E. N. Sotskii
    • 1
  1. 1.M. V. Keldysh Applied Mathematics InstituteAcademy of Sciences of the USSRMoscow

Personalised recommendations