Advertisement

Journal of engineering physics

, Volume 57, Issue 4, pp 1148–1155 | Cite as

Measuring the coefficient of aerodynamic drag for a sphere subject to nonisothermal streamlining

  • M. K. Asanaliev
  • Zh. Zh. Zheenbaev
  • K. K. Makesheva
Article
  • 38 Downloads

Abstract

We present the results from an experimental measurement of the coefficient of aerodynamic drag on spherical particles in an argon plasma at temperatures as high as 10,000 K, and for Mach numbers of M ∼ 0.05 and Reynolds numbers of Re ∼ 0.4–10.

Keywords

Argon Statistical Physic Reynolds Number Mach Number Experimental Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    H. Schlichting, Boundary-Layer Theory [Russian translation], Moscow (1974).Google Scholar
  2. 2.
    L. E. Sternin, The Fundamentals of the Gasdynamics of Two-Phase Flows in Nozzles [in Russian], Moscow (1974).Google Scholar
  3. 3.
    V. V. Averin, The Hydrodynamics, Electrophysics, and Thermophysics of Monochromatic Dispersed Substances [in Russian], Moscow (1983), Issue 615, pp. 55–86.Google Scholar
  4. 4.
    L. Torobin and W. Gauvin, Can. J. Chem. Eng.,38, No. 5, 189–200 (1960).Google Scholar
  5. 5.
    N. Zarin, “Measurement of noncontinuum and turbulence effects of subsonic sphere drag,” NASA CR-1585 (1970).Google Scholar
  6. 6.
    Bailey and Haight, RTK,10, No. 11, 54–62 (1972).Google Scholar
  7. 7.
    Selberg and Nicholls, RTK,8, No. 6, 22–31 (1970).Google Scholar
  8. 8.
    Carlson and Hoglund, RTK,2, No. 11, 104–109 (1964).Google Scholar
  9. 9.
    C. Crowe, J. Nicolls, and R. Morrison, 9th Symp. Comb., Academic Press, New York (1963), pp. 395–406.Google Scholar
  10. 10.
    V. I. Babii and I. G. Ivanova, Teploénergetika, No. 9, 19–23 (1965).Google Scholar
  11. 11.
    Seymour, Prikl. Mekh., Ser. E,3, No. 4, 20–30 (1971).Google Scholar
  12. 12.
    J. Lewis and W. Gauvin, AIChE J.,19, No. 5, 982–990 (1973).Google Scholar
  13. 13.
    D. Kassoy, T. Adamson, and A. Messiter, Phys. Fluid,9, No. 4, 671–681 (1966).Google Scholar
  14. 14.
    M. K. Asanaliev et al., Proc. 15th Int. Conf. Phenom. Ioniz. Gases, Contr. Paper, Pt. 2, Minsk (1981), pp. 959–960.Google Scholar
  15. 15.
    V. V. Kabanov and V. S. Klubnikin, Inzh.-Fiz. Zh.,48, No. 3, 396–402 (1985).Google Scholar
  16. 16.
    M. K. Asanaliev, Zh. Zh. Zheenbaev, et al., FKhOM, No. 3, 65–71 (1978).Google Scholar
  17. 17.
    Yu. V. Tsvetkov and S. A. Panfilov, Low-Temperature Plasma in Reduction Processes [in Russian], Moscow (1980).Google Scholar
  18. 18.
    E. Pfender and Y. Lee, Plasma Chem. Plasma Proc.,5, No. 3, 211–236 (1985).Google Scholar
  19. 19.
    É. I. Asinovskii, E. P. Pakhomov, and I. M. Yartsev, Chemical Reactions in a Low-Temperature Plasma [in Russian], Moscow (1977), pp. 83–103.Google Scholar
  20. 20.
    M. K. Asanaliev, K. K. Makesheva, V. M. Lelevkin, and R. M. Urusov, “Numerical analysis of plasma stream characteristics in a plasmatron channel with an intersectional cavity,” Preprint, Physics Institute, Academy of Sciences of the Kirghiz SSR, Frunze (1987).Google Scholar
  21. 21.
    K. Drellishak, “Partition function and thermodynamic properties of high-temperature gases,” AEDC, NAD-428210, Vol. 10, No. 1 (1964).Google Scholar
  22. 22.
    É. I. Asinovskii, E. P. Pakhomov, and I. M. Yartsev, Teplofiz. Vys. Temp.,16, No. 1, 28–36 (1978).Google Scholar
  23. 23.
    V. V. Kabanov and V. S. Klubnikin, in: Abstracts of the 9th All-Union Conference on Low-Temperature Plasma Generators, Frunze (1983), pp. 274–275.Google Scholar

Copyright information

© Plenum Publishing Corporation 1990

Authors and Affiliations

  • M. K. Asanaliev
    • 1
  • Zh. Zh. Zheenbaev
    • 1
  • K. K. Makesheva
    • 1
  1. 1.Physics InstituteAcademy of Sciences of the Kirghiz SSRFrunze

Personalised recommendations