Journal of engineering physics

, Volume 55, Issue 6, pp 1339–1342 | Cite as

Analysis of spectral turbulence in two-phase flows

  • F. N. Lisin
  • A. G. Shuklin
Article

Abstract

The degeneration of the lattice turbulence in two-phase flows and the behavior of the spectrum in the space of wave numbers are analyzed on the basis of a numerical solution of the dynamic equation for the spectral function of turbulence energy.

Keywords

Statistical Physic Dynamic Equation Spectral Function Turbulence Energy Lattice Turbulence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    Yu. A. Buevich and Yu. P. Gupalo, Zh. Prikl. Mekh. Tekh. Fiz., No. 4, 89–96 (1965).Google Scholar
  2. 2.
    Yu. A. Buevich and Yu. P. Gupalo, Zh. Prikl. Mekh. Tekh. Fiz., No. 5, 135–137 (1965).Google Scholar
  3. 3.
    A. S. Monin and A. M. Yaglom, Statistical Hydromechanics [in Russian], Part 2, Moscow (1967).Google Scholar
  4. 4.
    B. A. Kolovandin, N. N. Luchko, T. B. Sidorovich, and V. A. Sosinovich, Inzh.-Fiz. Zh.,42, No. 1, 46–52 (1982).Google Scholar
  5. 5.
    K. Meetz, Zs. Naturforsch.,11a, No. 10, 832–847 (1956).Google Scholar
  6. 6.
    G. S. Glushko and V. D. Traskovskii, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 1, 13–19 (1978).Google Scholar
  7. 7.
    Yu. A. Buevich, Izv. Akad Nauk SSSR, Mekh. Zhidk. Gaza, No. 5, 85–99 (1968).Google Scholar
  8. 8.
    R. W. Stewart and A. A. Townsend, Phil. Trans. R. Soc.,A243, No. 867, 359–386 (1951).Google Scholar
  9. 9.
    A. M. Taweel and J. Landau, Int. J. Multiphase Flow,3, 341–351 (1977).Google Scholar
  10. 10.
    G. Hetsroni and M. Sokolov, J. Appl. Mech.,38, No. 2, 315–327 (1971).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • F. N. Lisin
    • 1
  • A. G. Shuklin
    • 1
  1. 1.VNIIÉnergotsvetmetSverdlovsk

Personalised recommendations