Journal of engineering physics

, Volume 51, Issue 5, pp 1359–1362 | Cite as

Group analysis of the heat-conduction equation. 1. Invariant solutions

  • N. M. Tsirel'man


Invariant solutions of the heat-conduction equation are constructed in terms of displacements of the isotherms.


Statistical Physic Group Analysis Invariant Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    L. V. Ovsyannikov, Dokl. Akad. Nauk,125, No. 3, 492–495 (1959).Google Scholar
  2. 2.
    N. Kh. Ibragimov, Group Transformations in Mathematical Physics [in Russian], Moscow (1983).Google Scholar
  3. 3.
    J. G. Berryman, J. Math. Phys.,21, No. 6, 1326–1331 (1980).Google Scholar
  4. 4.
    G. Rosen, Phys. Rev. Lett.,49, No. 25, 1844–1847 (1982).Google Scholar
  5. 5.
    N. M. Tsirel'man, Izv. Akad. Nauk, Energ. Transport, No. 2, 140–144 (1985).Google Scholar
  6. 6.
    V. A. Galaktionov, Dokl. Akad. Nauk,264, No. 5, 1035–1040 (1982).Google Scholar
  7. 7.
    V. A. Galaktionov, Dokl. Akad. Nauk,265, No. 4, 784–789 (1982).Google Scholar
  8. 8.
    G. I. Barenblatt, Similarity Theory, Self-Modeling, and Asymptotics [in Russian], Moscow (1978).Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • N. M. Tsirel'man
    • 1
  1. 1.Sergo Ordzhonikidze Aviation InstituteUfim

Personalised recommendations