Journal of engineering physics

, Volume 56, Issue 4, pp 463–467 | Cite as

Optimization of two-dimensional nonsteady-state temperature regimes with limitation imposed on the parameters of the thermal process

  • V. M. Vigak
  • A. V. Kostenko
  • M. I. Svirida


The two-dimensional nonsteady-state problem of optimum high-speed control of the heating of solids, where limitations are imposed on the control of the body temperature, the temperature drop, and similar parameters is studied.


Statistical Physic Body Temperature Temperature Regime Thermal Process Temperature Drop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. G. Butkovskii, S. A. Malyi, and Yu. N. Andreev, Optimum Control of Metal Heating [in Russian], Moscow (1972).Google Scholar
  2. 2.
    N. N. Golub', Avtomat. Telemekh.,28, No. 4, 38–57 (1967).Google Scholar
  3. 3.
    V. S. Kolesov, Inzh.-Fiz. Zh.,35, No. 4, 718–724 (1978).Google Scholar
  4. 4.
    V. M. Vigak, Optimum Control of Nonsteady Temperature Regimes [in Russian], Kiev (1979).Google Scholar
  5. 5.
    É. Ya. Rapoport, “Optimum control of the nonsteady heat-conduction process with consideration of phase limitations,” Submitted to VINITI 03.01.79, No. 55–79.Google Scholar
  6. 6.
    V. M. Vigak and A. V. Kostenko, “ Optimization of high-speed control of diffusion-type processes,” Submitted to VINITI, Kiev, 15.08.83, No. 4491–83.Google Scholar
  7. 7.
    N. N. Kalitkin, Numerical Methods [in Russian], Moscow (1978).Google Scholar
  8. 8.
    A. A. Samarskii, The Theory of Difference Schemes [in Russian], Moscow (1983).Google Scholar
  9. 9.
    A. A. Samarskii and E. S. Nikolaev, Methods for the Solution of Grid Equations [in Russian], Moscow (1978).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • V. M. Vigak
    • 1
  • A. V. Kostenko
    • 1
  • M. I. Svirida
    • 1
  1. 1.Institute of Applied Problems in Mechanics and MathematicsAcademy of Sciences of the Ukrainian SSRL'vov

Personalised recommendations