Advertisement

Journal of engineering physics

, Volume 56, Issue 4, pp 431–438 | Cite as

Application of the theory of similarity for purposes of generalizing the thermal-diffusion factor for mixtures of multiatomic nonpolar gases

  • A. F. Zolotukhina
Article
  • 16 Downloads

Abstract

The thermal-diffusion factor of 14 nonpolar-gas mixtures has been generalized on the basis of similarity theory. The theoretical values of αth obtained on the basis of this generalized relationship are compared with the experimental data.

Keywords

Experimental Data Statistical Physic Generalize Relationship Similarity Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. F. Bogatyrev and V. F. Kryuchkov, Applied and Theoretical Physics [in Russian], Alma-Ata, Vol. 8 (1976), pp. 107–111.Google Scholar
  2. 2.
    A. G. Usmanov and A. N. Berezhnoi, Zh. Fiz. Khim., No. 4, 907–919 (1960).Google Scholar
  3. 3.
    A. F. Zolotukhina and V. L. Zhdanov, Heat and Mass Transfer and the Transport Properties of Materials [in Russian], Minsk (1978), pp. 90–120.Google Scholar
  4. 4.
    H. Brown, Phys. Rev.,58, 661–663 (1940).Google Scholar
  5. 5.
    A. F. Bogatyrev, N. D. Kosov, and E. E. Makletsova, Diffusion in Gases and Liquids [in Russian], Alma-Ata (1972), pp. 55–58.Google Scholar
  6. 6.
    A. F. Zolotukhina, M. V. Sagarda, and E. A. Shashkov, Inzh.-Fiz. Zh.,38, No. 6, 965–971 (1985).Google Scholar
  7. 7.
    A. F. Zolotukhina, M. V. Sagarda, and E. A. Shashkov, Inzh.-Fiz. Zh.,39, No. 5, 810–814 (1985).Google Scholar
  8. 8.
    J. O. Hirschfelder, C. F. Curtiss, and R. Berd, Molecular Theory of Gases and Liquids, Wiley, New York (1964).Google Scholar
  9. 9.
    S. Bretsznajder, The Properties of Gases and Liquids [Russian translation] Moscow-Leningrad (1966).Google Scholar
  10. 10.
    I. F. Golubev, The Viscosity of Gases and Gas Mixtures [in Russian], Moscow (1959).Google Scholar
  11. 11.
    N. B. Vargaftik, Handbook on Thermophysical Properties of Gases and Liquids [in Russian], Moscow (1972).Google Scholar
  12. 12.
    M. F. Laranjeira, Physica,26, No. 26, 406–417 (1960).Google Scholar
  13. 13.
    T. L. Ibbs and L. Underwood, Proc. Soc.,39, 227 (1927) (cited in [11]).Google Scholar
  14. 14.
    W. G. Schmahl and I. Schewe, Z. Elektrochem.,46, 203 (1940) (cited in [11]).Google Scholar
  15. 15.
    H. L. Robjohns and P. J. Dunlop, Ber. Bunsenges. Phys. Chem.,88, No. 12, 1239–1241 (1984).Google Scholar
  16. 16.
    K. E. Grew, F. A. Johnson, and W. E. J. Neal, Proc. R. Soc.,224, 513–526 (1954).Google Scholar
  17. 17.
    R. D. Trengove, K. R. Harris, H. L. Robjohns, and P. J. Dunlop, Physica,A135, No. 3, 506–519 (1985).Google Scholar
  18. 18.
    R. D. Trengove and P. J. Dunlop, Ber. Bunsenges. Phys. Chem.,87, 874–877 (1983).Google Scholar
  19. 19.
    T. L. Ibbs and K. E. Grew. Proc. Phys. Soc.,43, 142–156 (1931).Google Scholar
  20. 20.
    E. E. Makletsova, “Investigating the relationship between thermal-diffusion separation of certain binary gas mixtures as a function of temperature and concentration,” Dissertation, Physical Sciences, Alma Ata (1972).Google Scholar
  21. 21.
    J. M. Symons, M. L. Martin, and P. J. Dunlop, J. Chem. Soc. Faraday Trans, 1,75, 621–630 (1979).Google Scholar
  22. 22.
    A. K. Batabyal and A. K. Barua, J. Chem. Phys.,48, No. 6, 2557–2560 (1967).Google Scholar
  23. 23.
    G. A. Elliot and J. Mason, Proc. R. Soc.,A108, 378 (1925) (cited in [11]).Google Scholar
  24. 24.
    V. P. S. Nain and S. C. Saxena, J. Chem. Phys.,51, No. 4, 1541–1545 (1969).Google Scholar
  25. 25.
    N. E. S. Farag and F. Shahin, Z. Phys. Chem., No. 245, 145–151 (1969).Google Scholar
  26. 26.
    A. G. Shashkov, A. F. Zolotukhina, and T. N. Abramenko, Inzh.-Fiz. Zh.,24, No. 6, 1045–1050 (1973).Google Scholar
  27. 27.
    A. N. Berezhnoi, Thermophysical Characteristics of Matter [in Russian], No. 1, Moscow (1967), pp. 17–32.Google Scholar
  28. 28.
    A. F. Bogatyrev, “Thermal diffusion in rarefied and moderately dense gas mixtures,” Dissertation, Doctor of Technical Sciences, Alma Ata (1981).Google Scholar
  29. 29.
    M. Puschner, Z. Phys.,106, 470 (1937) (cited in [11]).Google Scholar
  30. 30.
    K. E. Grew and T. A. Ibbs, Thermal Diffusion in Gases [Russian translation], IL (1956).Google Scholar
  31. 31.
    A. E. Humphreys and P. Gray, Proc. R. Soc.,A322, 89–100 (1971).Google Scholar
  32. 32.
    A. K. Pal, S. K. Bhattacharyya, and A. K. Barua, J. Phys. B, Atom. Mol.,7, No. 1, 178–184 (1974).Google Scholar
  33. 33.
    C. S. Roy, S. K. Bhattacharyya, and A. K. Pal, Ind. J. Phys.,47, 651–663 (1973).Google Scholar
  34. 34.
    R. D. Trengove, H. L. Robjohns, and P. J. Dunlop, Ber. Bunsenges. Phys. Chem.,86, No. 10, 951–955 (1982).Google Scholar
  35. 35.
    A. Van Itterbeek, O. van Paemel, and J. van Lierde, Physica,138, 231–239 (1947).Google Scholar
  36. 36.
    T. L. Ibbs, K. E. Grew, and A. A. Hirst, Proc. Phys. Soc.,41, 456–475 (1929).Google Scholar
  37. 37.
    I. N. Korzun and A. M. Sapronov, Physical Hydrodynamics and Diffusion in Gases [in Russian], Alma Ata (1985), pp. 59–61.Google Scholar
  38. 38.
    H. G. Drickamer, S. L. Dovney, and N. C. Pierce, J. Chem. Phys.,17, 408–410 (1949).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • A. F. Zolotukhina
    • 1
  1. 1.Institute of Applied PhysicsAcademy of Sciences of the Belorussian SSRMinsk

Personalised recommendations