Journal of engineering physics

, Volume 56, Issue 6, pp 637–642 | Cite as

Asymptotic theory of the spreading of partially wetting liquid

  • K. B. Pavlov
  • A. S. Romanov
  • A. P. Shakhorin


A mathematical model of the spreading of liquid along a plane solid surface is constituted for a finite equilibrium angle of wetting.


Mathematical Model Statistical Physic Solid Surface Asymptotic Theory Equilibrium Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. E. B. Dussan, Ann. Rev. Fluid Mech.,11, 371–400 (1979).Google Scholar
  2. 2.
    V. V. Pukhnachev and V. A. Solonnikov, Prikl. Mat. Mekh.,46, No. 6, 961–971 (1982).Google Scholar
  3. 3.
    L. M. Hocking, J. Fluid Mech.,79, Part 2, 209–229 (1977).Google Scholar
  4. 4.
    V. E. B. Dussan, J. Fluid Mech.,77, Part 4, 665–684 (1976).Google Scholar
  5. 5.
    L. M. Hocking and A. D. River, J. Fluid Mech.,121, Part 2, 425–442 (1982).Google Scholar
  6. 6.
    O. V. Voinov, Zh. Prikl. Mekh. Tekh. Fiz., No. 2, 92–96 (1977).Google Scholar
  7. 7.
    O. V. Voinov, Dokl. Akad. Nauk SSSR,243, No. 6, 1422–1425 (1978).Google Scholar
  8. 8.
    N. V. Deryagin and N. V. Churaev, Wetting Films [in Russian], Moscow (1984).Google Scholar
  9. 9.
    B. V. Deryagin, N. V. Churaev, and V. M. Muller, Surface Forces [in Russian], Moscow (1985).Google Scholar
  10. 10.
    H. Hervet and P.-G. Gennes, C. R. Acad. Sci. Paris,299, Ser. 2, No. 9, 499–503 (1984).Google Scholar
  11. 11.
    I. P. Bazarov, Thermodynamics [in Russian], Moscow (1976).Google Scholar
  12. 12.
    C. A. Miller and E. Ruckenstein, J. Call. Interf. Sci.,49, No. 3, 368–373 (1974).Google Scholar
  13. 13.
    E. Ruckenstein and C. S. Dunn, J. Coll. Interf. Sci.,59, No. 1, 135–138 (1977).Google Scholar
  14. 14.
    V. A. Shishlin, Z. M. Zorin, and N. V. Churaev, Kolloidn. Zh.,39, No. 2, 400–406 (1977).Google Scholar
  15. 15.
    V. A. Shishlin, Z. M. Zorin, and N. V. Churaev, Kolloidn. Zh.,39, No. 3, 520–526 (1977).Google Scholar
  16. 16.
    H. Schlichting, Boundary Layer Theory McGraw-Hill, New York (1967).Google Scholar
  17. 17.
    K. B. Pavlov, A. S. Romanov, and A. P. Shakhorin, in: Numerical Methods of Continuum Mechanics [in Russian], Vol. 17, Novosibirsk (1986), No. 3, pp. 132–138.Google Scholar
  18. 18.
    A. A. Samarskii and I. M. Sobol', Zh. Vychisl. Mat. Mat. Fiz.,3, No. 4, 980–986 (1963).Google Scholar
  19. 19.
    M. Van Dyke, Perturbation Methods in Fluid Mechanics, Parabolic, Stanford, CA (1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • K. B. Pavlov
    • 1
  • A. S. Romanov
    • 1
  • A. P. Shakhorin
    • 1
  1. 1.N. É. Baumann Moscow Higher Technical SchoolUSSR

Personalised recommendations