Skip to main content
Log in

Effect of the thermophysical properties of the surface on heat transfer in turbulent flow

  • Published:
Journal of engineering physics Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. L. M. Trefethen, “Measurement of mean fluid temperatures,” Trans. ASME,78, No. 6, 1207–1212 (1956).

    Google Scholar 

  2. D. A. Labuntsov, “Heat transfer in pipes during laminar motion of a liquid taking into account the axial thermal conductivity,” Dokl. Akad. Nauk SSSR, 118, No. 6, 1118–1120 (1958).

    Google Scholar 

  3. M. S. Pirogov, “Heat transfer to sodium in the region of small Peclet numbers,” Teploenergetika, No. 3, 62–64 (1961); M. S. Pirogov, “Results of an investigation of heat transfer to sodium at low Peclet numbers,” in: Liquid Metals [in Russian], Gosatomizdat, Moscow (1963), pp. 94–108.

    Google Scholar 

  4. B. S. Pietukhov and A. Ya. Yushin, “Heat transfer during the flow of a liquid metal in laminar and transient regions,” Dokl. Akad. Nauk SSSR,136, No. 6, 1321–1324 (1961).

    Google Scholar 

  5. L. G. Genin, “Calculation of the temperatures of the liquid and of the wall during flow in pipes taking into account the axial thermal conductivity,” Teplofiz. Vys. Temp.,1, No. 2, 247–253 (1963).

    Google Scholar 

  6. M. K. Gorchakov, “Taking into account longitudinal heat leakage in measurements of the average temperature of the liquid in pipes and heat exchangers at low Peclet numbers,” in: Liquid Metals [in Russian], Atomizdat, Moscow (1967), pp. 43–53.

    Google Scholar 

  7. S. Mori, M. Sakakibara, and A. Tanimoto, “Steady heat transfer to laminar flow in a circular tube with conduction on the tube wall,” Kagaku Kogaku,38, 144 (1974).

    Google Scholar 

  8. M. Sakakibara and K. Endoh, “Effect of conduction in wall on heat transfer with turbulent flow between parallel plates,” Int. J. Heat Mass Transfer,20, No. 5, 507–516 (1977).

    Article  Google Scholar 

  9. A. V. Luikov, V. A. Aleksachenko, and A. A. Aleksachenko, “Analytical methods of solution of conjugated problems on convective heat transfer,” Int. J. Heat Mass Transfer,14, No. 8, 1047–1056 (1971).

    Article  Google Scholar 

  10. A. V. Luikov, “Conjugate convective heat-transfer problems,” Int. J. Heat Mass Transfer,17, No. 2, 257–265 (1974).

    Article  Google Scholar 

  11. M. G. Sell and J. L. Hudson, “The effect of wall conduction on heat transfer to a slug flow,” Int. J. Heat Mass Transfer,9, No. 1, 11–19 (1970).

    Article  Google Scholar 

  12. E. J. Davis and W. N. Gill, “The effects of axial conduction in the wall on heat transfer with laminar flow,” Int. J. Heat Mass Transfer,13, No. 3, 459–470 (1970).

    Article  Google Scholar 

  13. A. P. Hatton and A. Quarmby, “The effect of axially varying and unsymmetrical boundary conditions on heat transfer with turbulent flow between parallel plates,” Int. J. Heat Mass Transfer,6, No. 7, 903–918 (1963).

    Article  Google Scholar 

  14. M. Sakakibara, S. Mori, and A. Tanimoto, “Effect of wall conduction on convective heat transfer with laminar boundary layer,” Kagaku Kogaku,37, 281–285 (1973).

    Google Scholar 

  15. P. A. Ushakov, “Approximate thermal modeling of cylindrical fuel elements,” in: Liquid Metals [in Russian], Atomizdat, Moscow (1967), pp. 137–148.

    Google Scholar 

  16. A. V. Zhukov, V. I. Subbotin, and P. A. Ushakov, “Heat transfer accompanying longitudinal flow of liquid metal over separated rod bundles,” ibid.in:, pp. 149–170.

    Google Scholar 

  17. A. V. Zhukov, L. K. Kudryavtseva, E. Ya. Sviridenko, et al., “Experimental study of models of temperature fields of fuel elements,” ibid.in:, pp. 170–194.

    Google Scholar 

  18. A. V. Zhukov, P. L. Kirillov, N. M. Matyukhin, et al., “Thermohydraulic calculation of fuel-cell assemblies of fast reactors with liquid-metal cooling,” Series on the Physics of Nuclear Reactors [in Russian], Énergoatomizdat, Moscow (1985), p. 148.

    Google Scholar 

  19. L. K. Vukovich, S. S. Titar', and A. V. Nikolaev, “Heat flow from a sphere with an internal heat source accompanying a jet flow over the sphere,” Promyshlennaya Teplotekhnika,4, No. 2, 15–18 (1982).

    Google Scholar 

  20. A. Sh. Dorfman, “Effect of the thermal properties of the heat-exchange surface on the intensity of heat exchange,” Teploenergetika, No. 3, 8–10 (1983).

    Google Scholar 

  21. V. A. Grigor'ev, Yu. M. Pavlov, and E. V. Ametistov, Boiling of Cryogenic Liquids [in Russian], Énergiya, Moscow (1977).

    Google Scholar 

  22. D. A. Labuntsov and Yu. B. Zudin, Heat Exchange Processes with Periodic Intensity [in Russian], Energoatomizdat, Moscow (1984).

    Google Scholar 

  23. M. Kh. Ibragimov, V. I. Merkulov, and V. I. Subbotin, “Statistical characteristics of the pulsations of the temperature of the wall of a heat exchanger with high heat fluxes,” in: Liquid Metals [in Russian], Atomizdat, Moscow (1967), pp. 71–81.

    Google Scholar 

  24. V. P. Bobkov, Yu. I. Gribanov, M. Kh. Ibragimov, et al., “Measurement of the intensity of temperature pulsations accompanying turbulent flow of mercury in a pipe,” Teplofiz. Vys. Temp.,3, No. 5, 708–716 (1965).

    Google Scholar 

  25. V. P. Bobkov, M. Kh. Ibragimov, and V. I. Subbotin, “Statistical characteristics of turbulent temperature pulsations in a fluid flow,” in: Liquid Metals [in Russian], Atomizdat, Moscow (1967), pp. 53–71.

    Google Scholar 

  26. M. Khisida and I. Nagano, “Structure of turbulent velocity and temperature pulsations in a fully developed flow in a pipe,” Teploperedacha,101, No. 1, 16–25 (1979).

    Google Scholar 

  27. M. Elena, “Etude expérimentale de la turbulence au voisinage de la paroi d'un tube légerement chauffe,” Int. J. Heat Mass Transfer,20, No. 9, 935–944 (1977).

    Article  Google Scholar 

  28. P. L. Kirillov, N. M. Galin, A. I. Groshev, and V. I. Slobodchuk, “Effect of the properties of the wall on heat transfer accompanying turbulent motionof liquid metals in pipes,” Teploenergetika, No. 3, 63–64 (1984).

    Google Scholar 

  29. V. I. Subbotin, A. K. Papovyants, P. L. Kirillov, et al., “Study of heat transfer to the liquid sodium in pipes,” At. Energ.,13, No. 4, 380–382 (1962).

    Google Scholar 

  30. P. L. Kirillov, “Generalization of experimental data on heat transport in liquid metals,” At. Energ.,13, No. 5, 484 (1962).

    Google Scholar 

  31. S. S. Kutateladze, B. P. Mironov, V. E. Nakoryakov, and E. M. Khabakpasheva, Experimental Investigation of Turbulent Flows Near Walls [in Russian], Nauka, Novosibirsk (1975).

    Google Scholar 

  32. J. P. Maye, Communication a l'Ecole Intern., d'été, Transfer de chaleur, Hercegovini Novi, Yugoslavia, September, 1968.

    Google Scholar 

  33. A. A. Zhukauskas and A. A. Shlanchyauskas, Heat Transter in a Turbulent Fluid Flow [in Russian], Mintis, Vilnius (1973).

    Google Scholar 

  34. S. Tanimoto and T. J. Hanratty, “Fluid temperature fluctuations accompanying turbulent heat transfer in a pipe,” Chem. Eng. Sci.,18, 307–311 (1963).

    Article  Google Scholar 

  35. A. F. Polyakov, “Temperature fluctuations near a surface washed by turbulent flow,” Proceedings of the Disa Conference on Fluid Dynamics Measurement in Industrial and Medicine Environments, Vol. 1, Leicester (1972), pp. 243–249.

    Google Scholar 

  36. A. F. Polyakov, “Effect of the wall on the temperature pulsations in the viscous boundary layer,” Teplofiz. Vys. Temp.,12, No. 2, 328–336 (1974).

    Google Scholar 

  37. E. M. Khabakhpasheva, “Some data on the structure in the viscous boundary layer,” in: Problems of Thermal Physics and Physical Hydrodynamics [in Russian], Nauka, Novosibirsk (1974), pp. 223–234.

    Google Scholar 

  38. S. S. Kutateladze, E. M. Khabakhpasheva, and B. V. Perepelitsa, “Temperature pulsations in the viscous boundary layer,” in: Heat Transfer 1978 [in Russian], Nauka, Moscow (1980), pp. 5–13.

    Google Scholar 

  39. L. Prandtl, “Uber Flussigkeitsbewegung bei sehr kleiner Reibung,” Verhandl. III Intern. Mat. Kongress, Heidelberg (1904) (Leipzig, 1905), pp. 484–491.

  40. L. Prandtl, Hydroaeromechanics [Russian translation], Inostr. Lit., Moscow (1949).

    Google Scholar 

  41. L. Prandtl, “New results in the study of turbulence,” in: Problems in Turbulence [Russian translation], ONTI, Moscow (1936), pp. 9–16.

    Google Scholar 

  42. J. Nikuradge, “Gesetzmassigkeiten der turbulenten Stromung in glatten Rohren,” VDI, Forshugsheft, No. 356, 63 (1932); J. Nikuradge, “Characteristics of turbulent motion in smooth pipes,” in: Problems in Turbulence, ONTI, Moscow (1936), pp. 75–150.

    Google Scholar 

  43. G. I. Taylor, “Statistical theory of turbulence,” Proc. R. Soc. (London),151A, 429–454 (1935).

    Google Scholar 

  44. A. A. Towendsen, “The fully developed turbulent wake of a circular cylinder,” Australian J. Sci. Res.,2A, 451–468 (1949); A. A. Townsend [Russian translation], IL, Moscow (1959).

    Google Scholar 

  45. S. Corrsin and A. L. Kistler, “Free-stream boundaries of turbulent flows,” NACA Report No. 1244 (1955).

  46. P. S. Clebanoff, “Characteristics of turbulence in a boundary layer with zero pressure gradient, NACA Report No. 1247 (1955).

  47. I. S. G. Kovasznay, V. Kibens, and R. F. Blackwelder, “Large-scale motion in the intermittent region of a turbulent boundary layer,” J. Fluid Mech.,41, No. 2, 283–326 (1970).

    Google Scholar 

  48. E. R. Korino and R. S. Brodki, “Visual investigation of the region near the wall in a turbulent flow,” Mekhanika, No. 1, 56–82 (1971).

    Google Scholar 

  49. G. R. Offen and S. Y. Kline, “A proposed model of the bursting process in turbulent boundary layers,” J. Fluid Mech.,70, No. 2, 209–228 (1975).

    Google Scholar 

  50. J. M. Wallace, H. Eckelmann, and R. S. Brodkey, “The wall region in turbulent shear flow,” J. Fluid Mech.,54, No. 1, 39–48 (1972).

    Google Scholar 

  51. S. Kline, U. Reinolds, F. Shraub, et al., “Structure of turbulent boundary layers,” Makhanika, No. 4, 41–78 (1969).

    Google Scholar 

  52. H. T. Kim, S. I. Kline, and W. C. Reinolds, “The production of turbulence near a smooth wall in a turbulent boundary layer,” J. Fluid Mech.,50, No. 1, 133–160 (1971).

    Google Scholar 

  53. A. Fage and H. C. H. Towendsend, “Examination of turbulent flow with an ultramicroscope,” Proc. R. Soc.,135A, 656–677 (1932).

    Google Scholar 

  54. R. M. Nedderman, “The measurement of velocities in the wall region of turbulent liquid pipe flow,” Chem. Eng. Sci.,16, 120–126 (1961).

    Article  Google Scholar 

  55. A. T. Popovich and R. L. Hummel, “Experimental study of the viscous sublayer in turbulent pipe flow,” Am. Inst. Chem. Eng. J.,13, No. 5, 854–860 (1967).

    Google Scholar 

  56. A. K. M. F. Hussain and W. G. Reynolds, “The mechanics of organized wave in turbulent shear flow,” J. Fluid Mech.,41, No. 2, 241–258 (1970).

    Google Scholar 

  57. A. K. M. F. Hussain, “Coherent structures reality and myth,” Phys. Fluids,26(10), 2816–2850 (1983).

    Article  Google Scholar 

  58. R. L. Meek and A. D. Baier, “The periodic viscous sublayer in turbulent flow,” Am. Inst. Chem. Eng. J.,16, No. 5, 841–848 (1970).

    Google Scholar 

  59. J. Laufer, “The structure of turbulence in fully developed pipe flow,” NACA Report TR 1174 (1954).

  60. L. C. Thomas, “A turbulent burst model of wall turbulence for two-dimensional turbulent boundary layer flow,” Int. J. Heat Mass Transfer,25, No. 8, 1127–1136 (1982).

    Google Scholar 

  61. E. Alp and A. B. Strong, “Measurements of characteristic time scales of the turbulent boundary layer with mass transfer,” Int. J. Heat Mass Transfer,24, No. 3, 521–531 (1981).

    Google Scholar 

  62. F. A. Schraub and S. Y. Kline, “A study of the structure of the turbulent boundary layer with and without longitudinal pressure gradients,” Report MD-12, Stanford University, California (1969) (cited in [60]).

    Google Scholar 

  63. V. P. Mironov and E. M. Khabakhpasheva, “Structure of turbulent flows and transport processes near walls,” in: Contemporary Problems in the Theory of Heat Transfer and Physical Hydrodynamics [in Russian], Siberian Branch, Academy of Sciences of the USSR, Novosibirsk (1984), pp. 173–191.

    Google Scholar 

  64. B. V. Perepelitsa and E. M. Khabakhpasheva, “Experimental study of turbulent temperature pulsations in the wall region of the flow,” in: Mechanics of Turbulent; Flows [in Russian], Nauka, Moscow (1980), pp. 225–230.

    Google Scholar 

  65. J. Laufer and M. A. B. Narayanan, “Mean period of the turbulent production mechanism in a boundary layer,” Phys. Fluids,14, No. 1, 182–183 (1971).

    Article  Google Scholar 

  66. L. Fulachier and R. Dumos, “Temperature and velocity fluctuations in a boundary layer,” J. Fluid Mech.,77, No. 2, 257–277 (1976).

    Google Scholar 

  67. L. Fulachier and R. A. Antonia, “Spectral analogy between temperature and velocity fluctuations in several turbulent flows,” Int. J. Heat Mass Transfer,27, No. 7, 987–997 (1984).

    Google Scholar 

  68. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Oxford Univ. Press (1959).

  69. M. A. Gol'dshtik (ed.), Structural Turbulence: Collection of Papers [in Russian], Siberian Branch, Academy of Sciences of the USSR, Novosibirsk (1982).

    Google Scholar 

Download references

Authors

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 50, No. 3, pp. 501–512, March, 1986.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirillov, P.L. Effect of the thermophysical properties of the surface on heat transfer in turbulent flow. Journal of Engineering Physics 50, 359–369 (1986). https://doi.org/10.1007/BF00870135

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00870135

Keywords

Navigation