Skip to main content
Log in

Thermoanemometric sensors for studying three-dimensional streams

  • Reviews
  • Published:
Journal of engineering physics Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  1. S. M. Gorlin and I. I. Slezinger, Aerodynamic Measurements, Methods and Instruments [in Russian], Nauka, Moscow (1964).

    Google Scholar 

  2. N. A. Zaks, Principles of Experimental Aerodynamics [in Russian], Oborongiz, Moscow (1953).

    Google Scholar 

  3. A. K. Martynov, Experimental Aerodynamics [in Russian], Oborongiz, Moscow (1950).

    Google Scholar 

  4. B. N. Yur'ev, Experimental Aeordynamics [in Russian], Part 1, Oborongiz, Leningrad (1939).

    Google Scholar 

  5. A. N. Petunin, Methods and Technology of Measurements of the Parameters of a Gas Stream [in Russian], Mashinostroenie, Moscow (1972).

    Google Scholar 

  6. A. N. Petunin, Measurement of the Parameters of a Gas Stream [in Russian], Mashinostroenie, Moscow (1974).

    Google Scholar 

  7. R. C. Pankhurst and D. W. Holder, Wind-Tunnel Technique, Pitman, London (1952).

    Google Scholar 

  8. N. F. Peshekhonov, Instruments for Measuring the Pressure, Temperature, and Direction of a Stream in a Compressor [in Russian], Oborongiz, Moscow (1962).

    Google Scholar 

  9. I. L. Povkh, Aerodynamic Experiment in Mechanical Engineering [in Russian], Leningrad (1974).

  10. S. G. Popov, The Measurement of Air Streams [in Russian], OGIZ, Gostekhizdat, Moscow (1947).

    Google Scholar 

  11. V. A. Kuz'min, “Error in measuring the intensity of turbulent pulsations of stream velocity with a thermoanemometer,” Tr. Metrol. Inst. SSSR, No. 157 (217), 96–100 (1975).

    Google Scholar 

  12. A. G. Elfimov, V. A. Lebiga, and V. V. Chernykh, “A direct-current thermoanemometer for measuring turbulence at superhigh velocities,” Izv. Sib. Otd. Akad. Nauk SSSR, No. 3, 15–18 (1976).

    Google Scholar 

  13. J. O. Hinze, Turbulence, McGraw-Hill (1975).

  14. P. Bradshaw, An Introduction to Turbulence and Its Measurement, Pergamon Press, Oxford-New York (1971).

    Google Scholar 

  15. G. Comte-Bellot, Turbulent Flow in a Channel with Parallel Walls [Russian translation], Mir, Moscow (1968).

    Google Scholar 

  16. S. S. Kutateladze and Ya. Ya. Tomsons, “Automation of experimental treatment in the investigation of turbulent streams,” Abstracts of Second All-Union Conference on Experimental Methods and Apparatus for the Investigation of Turbulence [in Russian], Novosibirsk (1977).

  17. B. S. Petukhov et al., “Methods of thermoanemometric measurement in three-dimensional, nonisothermal streams,” Preprint No. 2-008, Institute of High Temperatures, Academy of Sciences of the USSR, Moscow (1977).

    Google Scholar 

  18. J.-D. Vagt, “Hot-wire probes in low flow,” Prog. Aerosp. Sci.,18, No. 4, 271–323 (1979).

    Google Scholar 

  19. H. H. Bruun, “Interpretation of X-hot-wire signals,” DISA Inf., No. 18, 5–10 (1975).

    Google Scholar 

  20. H. H. Bruun and P. O. A. L. Davies, “Measurements of turbulent quantities by single hotwires and X-hot-wires using digital evaluation techniques,” Fluid Dynamic Measurement in the Industrial and Medical Environment, Proc. DISA Conf., Vol. 1 (1972), pp. 163–166.

    Google Scholar 

  21. K. Narinder, T. Chevray, and R. Chervay, “Cross-wire anemometry in high intensity turbulence,” J. Fluid Mech.,71, Part 4, 785–800 (1975).

    Google Scholar 

  22. K. Bremhorst, “The effect of wire length and separation on X-array hot-wire anemometer measurements,” IEEE Trans. Instrum. Meas.,21, No. 3, 244–248 (1972).

    Google Scholar 

  23. A. Strohl and G. Comte-Bellot, “Aerodynamic effects due to configuration of X-wire anemometers,” Trans. ASME,E40, No. 3, 661–666 (1973).

    Google Scholar 

  24. K. Varsamov, G. Genchev, and T. Chak"yarov, Godishnik Mash.-Elektrotekh. Inst., No. 3, 27–32 (1966).

    Google Scholar 

  25. V. MacCrosky and E. Durbin, “Measurement of stream direction and frictional stress with tape and wire thermoanemometers,” Trans. ASME, Theor. Principles Eng. Cal., No. 1, 55–63 (1972).

    Google Scholar 

  26. M. Horvatin, “Einige Probleme der analytischen Kalibrierung von Hitzdrahtsonden mit zwei Messdrähten, Teil I,” Arch. Tech. Mess., No. 421, 15–18 (1971).

    Google Scholar 

  27. M. Horvatin, “Einige Probleme der analytischen Kalibrierung von Hitzdrahtsondon mit zwei Messdrähten, Teil II,” Arch. Tech. Mess., No. 422, 37–40 (1971).

    Google Scholar 

  28. G. A. Dreitser and V. F. Chetyrin, “A measurement system for the experimental investigation of the turbulent structure of a stream under nonsteady conditions,” Abstracts of Papers of the Third All-Union Conference on Experimental Methods and Apparatus for the Investigation of Turbulence, Inst. Teplofiz. Sib. Otd. Akad. Nauk SSSR [in Russian] (1979), pp. 74–75.

  29. V. Rehak, “Problematika pouziti sonds dvema zhavenymi dratky pro vysetrovant turbulentiko proudeni,” Strojnicky Casop.,19, Nos. 2–3, 194–203 (1968).

    Google Scholar 

  30. F. Klatt, “Einfluss der Schräganströmung auf die Messung der mittleren geschwindigkeit mit der X-Hitzdrahtsonde eines Konstant-Temperature-Anemometers,” Monatsber. Deutsch. Akad. Wiss. Berlin,8, No. 5, 429–436 (1966).

    Google Scholar 

  31. F. Klatt, “Über einige Erfahrungen bei der Messung mit X-Hitzdrahtsonden,” Wiss. Z. Tech. Univ. Dresden, No. 4, 1204–1207 (1967).

    Google Scholar 

  32. J. Keith and B. Klaus, “Hot-wire anemometer measurements in flows where direction of mean velocity changes during a traverse,” IEEE Trans. Instrum. Meas.,18, No. 3, 163–166 (1969).

    Google Scholar 

  33. D. T. Gjessing, T. Lanes, and A. Tangerund, “A hot-wire anemometer for the measurement of the three orthogonal components of wind velocity and also directly the wind direction employing no moving part,” J. Phys. E,2, 51–54 (1969).

    Google Scholar 

  34. A. K. Anand and B. Lakshminarayana, “Experimental study of three-dimensional turbulent boundary layer and turbulence characteristics inside a turbomachinery rotor passage,” Trans. ASME, J. Eng. Power,100, No. 4, 676–690 (1978).

    Google Scholar 

  35. B. Lakshminarayana and A. Poncet, “A method of measuring three-dimensional rotating wakes behind turbomachinery rotors,” Trans. ASME,96, No. 2, 87–91 (1974).

    Google Scholar 

  36. E. M. Karpov et al., “Experimental determination of the components of a stream tube vector,” in: Information Measuring Systems and Their Elements [in Russian], Kuibyshev Polytechnic Institute (1973), pp. 58–61.

  37. E. M. Karpov et al., “On the determination of stream velocity vector components,” Izv. Vyssh. Uchebn. Zaved., Priborostr., No. 6, 12–14 (1977).

    Google Scholar 

  38. F. Chometon and J. Damion, “Determination of the size and the sign of velocity vector in a nonstationary unidimensional flow,” in: Conference on Fluid Dynamic Measurements in the Industrial and Medical Environments. Proceedings of DISA Conference, Univ. Leicester, 1972, Vol. 1, Humanities Press, New York (1972–3), pp. 69–72.

    Google Scholar 

  39. G. D. Huffman, “Calibration of triaxial hot-wire probes using a numerical search algorithm,” J. Phys. E., Sci. Instrum.,13, 1177–1182 (1980).

    Google Scholar 

  40. M. Acrivlellis, “Measurements by means of triple-sensor probes,” J. Phys. E,13, 986–992 (1980).

    Google Scholar 

  41. A. M. Novikov and A. I. Yatsenko, “Measurement of the velocity of a three-dimensional stream by the thermoanemometric method,” Izv. Vyssh. Uchebn. Zaved., Priborostr., No. 6, 26–30 (1983).

    Google Scholar 

  42. E. P. Dyban and É. Ya. Épik, “Fundamental principles in the allowance for the spatial resolution of the primary transformer in the measurement of turbulence microstructure with a hot-wire thermoanemometer,” in: Abstracts of Papers of the Third All-Union Conference on Experimental Methods and Instruments for the Investigation of Turbulence [in Russian], Inst. Teplofiz., Sib. Otd. Akad. Nauk SSSR, Novosibirsk (1979), pp. 15–17.

    Google Scholar 

  43. A. F. Polyakov and S. A. Shindin, “Influence of the size of a thermoanemometric probe on the measurement of velocity pulsation characteristics and temperature,” in: Abstracts of Papers of the Third All-Union Conference on Experimental Methods and Instruments for the Investigation of Turbulence [in Russian], Inst. Teplofiz., Sib. Otd. Akad. Nauk SSSR, Novosibirsk (1979), pp. 29–31.

    Google Scholar 

  44. G. Fabris, “Probe and method for simultaneous measurements of true instantaneous temperature and three velocity components in turbulent flow,” Rev. Sci. Instrum.,49, No. 5, 654–664 (1978).

    Google Scholar 

  45. C. Reguier, “Interaction entre les fils d'une sonde anemometrique a fils eroises,” C. R. Acad. Sci.,271, No. 7, 392–395 (1970).

    Google Scholar 

  46. N. V. Polyakov and V. S. Kosorygin, “Physical principles of the mechanism of influence of the orientation of a thermoanemometer sensor on the results of measurements of the dynamic characteristics of a subsonic stream,” Abstracts of Papers of the Third All-Union Conference on Experimental Methods and Instruments for the Investigation of Turbulence [in Russian], Inst. Teplofiz., Sib. Otd. Akad. Nauk SSSR, Novosibirsk (1979), pp. 11–13.

    Google Scholar 

  47. T. B. Walker and K. J. Bullock, “Measurement of longitudinal and normal velocity fluctuations by sensing the temperature down stream of a hot-wire,” J. Phys. E,5, No. 10, 1173–1178 (1972).

    Google Scholar 

  48. F. E. Jerom, D. E. Guittont, and R. P. Patel, “Experimental study of the thermal wake interference between closely spaced wires of a X-type hot-wire probe,” Aeronaut. Q.,22, No. 2, 119–126 (1971).

    Google Scholar 

  49. Yu. A. Shmedro, “Measurement of stream direction with a wire thermoanemometer,” Tr. Nikolaev. Korablestroit. Inst., No. 126, 113–118 (1977).

    Google Scholar 

  50. C. Rey and C. Beguier, “On the use of a three parallel wire probe,” DISA Inform., No. 21, 11–15 (1977).

    Google Scholar 

  51. F. Durst and R. Ermshaus, “Hot-wire wake sensors for simultaneous two-dimensional velocity measurements,” Proceedings of the 17th Congress of the International Association for Hydraulic Research, Baden-Baden, Vol. 1 (1977), pp. 623–630.

    Google Scholar 

  52. C. Beguir, “Une nouvelle sonde anemometrique,” C. R. Acad. Sci.,277, No. 11, 475–478 (1973).

    Google Scholar 

  53. Yu. V. Karbe and S. P. Takhtuev, “A thermoanemometer for studying the temperature, velocity, and direction of a gas stream,” Prib. Sist. Upr., No. 11, 43–44 (1967).

    Google Scholar 

  54. C. Eleggert, “Development d'une sonde permettant la mesure de la vitesse et de la direction d'un ecoulement fluide par la methode du film choud,” Ingenieurs, No. 12, 11–15 (1968).

    Google Scholar 

  55. A. J. Reynolds, Turbulent Flows in Engineering Applications [Russian translation], Énergiya, Moscow (1979).

    Google Scholar 

  56. L. S. Bradbury and J. P. Castro, “A pulsed-wire technique for velocity measurements in highly turbulent flows,” J. Fluid Mech.,49, Part 4, No. 10, 657–691 (1971).

    Google Scholar 

  57. L. I. S. Bradbury, “Measurements with a pulsed-wire and a hot-wire anemometer in the highly turbulent wake of a normal flat plate,” J. Fluid Mech.,77, Part 3, 473–497 (1976).

    Google Scholar 

  58. O. O. Mojola, “The effects of orientation of hot-wire probe body in turbulent shear flow,” DISA Inform., No. 23, 24–27 (1978).

    Google Scholar 

  59. C. Gaulier, “Measurement of air velocity by means of a triple hot-wire probe,” DISA Inform., No. 21, 16–20 (1977).

    Google Scholar 

  60. A. F. Perry and C. L. Morrison, “Errors caused by hot-wire filament vibration,” J. Phys. E, Sci. Instrum.,5, No. 10, 1004–1008 (1972).

    Google Scholar 

  61. A. E. Perry, “The aeroelastic behavior of hot-wire anemometer filaments in an air stream,” J. Sound Vib.,22, No. 1, 41–58 (1972).

    Google Scholar 

  62. I. L. Povkh, G. P. Eremin, and A. M. Novikov, “Departure from the cosine law for thermoanemometer sensors with slack wires,” Inzh.-Fiz. Zh.,42, No. 6, 923–926 (1982).

    Google Scholar 

  63. C. E. Whitfield, J. C. Kelly, and B. Barry, “A three-dimensional analysis of rotor wakes,” Aeronaut. Q., No. 6, 285–300 (1972).

    Google Scholar 

  64. Yu. A. Shmedro and V. A. Boboshko, “Measurement of the turbulent characteristics of three-dimensional streams,” Tr. Nikolaev. Korablestr. Inst., No. 137, 63–67 (1978).

    Google Scholar 

  65. V. A. Mikhailov and E. N. Khoroshev, “Use of a constant-temperature thermoanemometer to measure the spatial characteristics of turbulent streams,” Tr. Leningr. Politekh. Inst., No. 352, 107–111 (1976).

    Google Scholar 

  66. V. A. Mikhailov, G. V. Smirnov, and E. N. Khoroshev, “The constant-temperature thermoanemometer and its use for measurements in highly turbulent streams,” Abstracts of Papers of the Third All-Union Conference on Experimental Methods and Instruments for the Investigation of Turbulence [in Russian], Inst. Teplofiz., Sib. Otd. Akad. Nauk SSSR, Novosibirsk (1979), p. 28.

    Google Scholar 

  67. B. K. Rogers and M. R. Head, “Measurement of three-dimensional boundary layers,” Aeronaut. J.,73, No. 705, 796–798 (1969).

    Google Scholar 

  68. M. Hoffmeister, “Zur Anwendung einer einfachen Hitzdrahtsonde auf dreidimensionale turbulente Strömungsfelder,” Maschinenbautechnik,19, No. 18, 399–408 (1970).

    Google Scholar 

  69. M. Hoffmeister, “Nichtlineares Auswertungsverfahren für Turbulenzmessung mit einfachen Hitzdrahtsonden,” Maschinenbautechnik,23, No. 12, 545–549 (1974).

    Google Scholar 

  70. M. Hoffmeister, “Probleme bei der Anwendung der Hitzdrahtmess-technik,” Z. Angew. Math. Mech.,52, No.10, 375–382 (1972).

    Google Scholar 

  71. M. Hoffmeister, “Über die notwendige Approximation des räumlichen Eichverhaltens von Hitzdrahtsonden,” Monatsber. Dtsch. Akad. Wiss. Berlin,13, No. 7, 527–537 (1971).

    Google Scholar 

  72. M. Hoffmeister, E. Helmstädter, and K. Graichen, “The application of a single hot-wire measuring technique to three-dimensional flows in mixing vessels,” Preprint No. 9, Akad. Wiss. DDR, Zentralinst. Math. Mech. (1979), pp. 1–23.

  73. E. Staglich, “Die Bestimmung der Stromungsrichtung mittels Hitzdrahtanemometer,” Wiss. Z. Hochsch. Verkehrswesen. Dresden,1, 95–99 (1969).

    Google Scholar 

  74. V. V. Ris and S. A. Smirnov, “Use of a thermoanemometer to measure the velocity vector of an air stream in a rotating radial channel,” Abstracts of Papers of the Third All-Union Conference on Experimental Methods and Instruments for the Investigation of Turbulence [in Russian], Inst. Teplofiz., Sib. Otd. Akad. Nauk SSSR, Novosibirsk (1979), pp. 54–55.

    Google Scholar 

  75. R. H. Kirchhoff and R. M. Struziak, “Direct measurement of the mean flow velocity vector,” Trans. ASME,198, No. 4, 736–739 (1976).

    Google Scholar 

  76. M. Acrivlellis, “An improved method for determining the flow field of multidimensional flows of any turbulence intensity,” DISA Inf., No. 23, 11–15 (1978).

    Google Scholar 

  77. M. Acrivlellis, “Hot-wire measurements in flows of low and high turbulence intensity,” DISA Inf., No. 22, 15–20 (1977).

    Google Scholar 

  78. M. Acrivlellis, “Flow field dependence on hot-wire probe cooling law and probe adjustment,” DISA Inf., No. 23, 17–23 (1978).

    Google Scholar 

  79. G. Hennig, “Über Fehler bei der Auswetung von Hitzdrahtmessungen, hervorgerufen durch Lagefehler des Hitzdrahtes,” Wiss. Z. Tech. Hochsch. O. Guericke Magdeburg,4, 53–57 (1981).

    Google Scholar 

  80. M. Acrivlellis, “Flow field dependence on hot-wire probe cooling law and probe adjustment,” DISA Inf., No. 23, 17–23 (1978).

    Google Scholar 

  81. H. H. Bruun, “Interpretation of hot-wire probe signals in subsonic airflows,” J. Phys. E, Sci. Instrum.,12, No. 12, 1116–1127 (1979).

    Google Scholar 

  82. R. Kinns, “A universal static calibration procedure for gawed hot wires,” J. Phys. E, Sci. Instrum.,6, No. 8, 754–758 (1979).

    Google Scholar 

  83. W. Siuru and E. Logan, “Use of slanting hot-wire to make measurements in an artificially roughened tube,” DISA Inf. No. 21, 5–10 (1977).

    Google Scholar 

  84. P. G. Papavergos and A. B. Hedley, “A simple practical method for establishing turbulence characteristics by means of a single 45° slant hot-wire probe in a field of known mean flow direction,” J. Phys.,12, No. 8, 761–765 (1979).

    Google Scholar 

  85. N. Bank and W. Gauvin, “Inclined hot-wire response asuations for a flow field having a dominant tangential velocity component,” Can. J. Chem. Eng.,55, No. 5, 516–520 (1977).

    Google Scholar 

  86. P. Jonas, “Measurement of turbulent flow characteristic using a single rotatable hotwire probe,” Arch. Budowy Masz.,22, No. 1, 27–33 (1975).

    Google Scholar 

  87. L. Moussa and S. Eskinazi, “Directional mean flow measurements using a single inclined hot-wire,” Phys. Fluids,18, No. 3, 298–305 (1975).

    Google Scholar 

  88. H. Fujita and L. Kovasznay, “Measurement of Reynolds number by a single rotated hot wire anemometer,” Rev. Sci. Instrum.,39, No. 9, 1351–1355 (1968).

    Google Scholar 

  89. P. Jonas, “Mereni turbulentnich fluktuaci rychlosti a teploty jednodratkvym termoanemometrem,” Strojnicky Cas.,24, No. 2–3, 113–126 (1973).

    Google Scholar 

  90. G. E. Andrews, D. Bradley, and G. F. Handy, “Hot-wire anemometer calibration for measurements of small gas velocities,” Inst. J. Heat Mass Transfer,15, No. 10, 1765–1786 (1972).

    Google Scholar 

  91. K. Dau, M. McLeod, and P. Surry, “Two probes for the measurement of the complete velocity vector in subsonic flow,” Aeronaut. J.,72, No. 696, 1066–1068 (1968).

    Google Scholar 

  92. G. de Grande and C. Hirsch, “Measurement of the Reynolds stress tensor using a single rotating slanting hot-wire,” Arch. Mech.,32, No. 1, 21–32 (1980).

    Google Scholar 

  93. G. de Grande and P. Kool, “An improved experimental method to determine the complete Reynolds stress tensor with a single rotating slanting hot wire,” J. Phys. E, Sci. Instrum.,14, 196–201 (1981).

    Google Scholar 

  94. K. F. Bozhko et al., “Determination of the direction and magnitude of mean air stream velocities,” Izmer. Tekh., No. 7, 91 (1970).

    Google Scholar 

  95. L. V. King, “On the convective heat transfer from small cylinders in a stream of fluid. Determination of convective constants of small platinum wires with application to hotwire anemometry,” Philos. Trans. R. Soc. London, Ser. A,214, 373–432 (1914).

    Google Scholar 

  96. G. E. Andrews, D. Bradley, and G. F. Handy, “Hot-wire anemometer calibration for measurements of small gas velocities,” Int. J. Heat Mass Transfer,15, No. 10, 1765–1786 (1972).

    Google Scholar 

  97. W. Forst and T. Moulden, Turbulence. Principles and Application [Russian translation], Mir, Moscow (1980).

    Google Scholar 

  98. A. V. Smol'yakov and V. M. Tkachenko, Measurement of Turbulent Pulsations [in Russian], Énergiya, Leningrad (1980).

    Google Scholar 

  99. S. Corrsin, “Turbulence: experimental methods,” Handb. Phys.,8, Part 2, 590 (1963).

    Google Scholar 

  100. R. Wigeland, M. Ahmed, and H. Nagib, “Vorticity measurements using calibrated vanevorticity indicators and cross-wires,” AIAA J.,16, No. 12, 1229–1234 (1978).

    Google Scholar 

  101. N. Bank and W. Gauvin, “Measurements of flow characteristics in a confined vortex flow,” Can. J. Chem. Eng.,55, No. 4, 397–402 (1977).

    Google Scholar 

  102. A. D. Zalay, “Hot-wire and vorticity meter wake vortex surveys,” AIM J.,14, No. 5, 694–696 (1976).

    Google Scholar 

  103. J. Quaid and W. Wright, “The response of a hot-wire anemometer in flows of gas mixtures,” Int. J. Heat Mass Transfer,16, No. 4, 819–828 (1973).

    Google Scholar 

  104. D. F. Simbirskii, V. S. Ruchko, and A. V. Oleinik, “A hot-wire thermoanemometer of finite length in a pulsating stream,” in: Aerodin. Teploperedacha Elektr. Mashin., No. 3, 104–114 (1973).

    Google Scholar 

  105. A. I. Leont'ev, E. V. Shishov, and V. M. Belov, “Use of a linearized thermoanemometer signal to diagnose a nonisothermal turbulent boundary layer,” in: Proceedings of the Second All-Union Conference on Experimental Methods and Apparatus for the Investigation of Turbulence [in Russian], Inst. Teplofiz., Sib. Otd. Akad. Nauk SSSR, Novosibirsk (1977), pp. 143–150.

    Google Scholar 

  106. V. A. Sandborn, Handbook of Turbulence, Vol. 1, New York-London (1977).

  107. Yu. P. Ignat'ev and V. V. Krotov, “Computer complex of an automated system for the measurement and analysis of pulsating streams,” Tr. Metrol. Inst. SSSR, No. 135 (195), 222–228 (1972).

    Google Scholar 

  108. A. K. Aleinikov, G. M. Sobetel', and V. P. Shevchenko, “A system for automation of hydrodynamic experiment,” in: Proceedings of the Second All-Union Conference on Experimental Methods and Apparatus for the Investigation of Turbulence [in Russian], Inst. Teplofiz., Sib. Otd. Akad. Nauk SSSR, Novosibirsk (1977), pp. 165–172.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 47, No. 4, pp. 690–697, October, 1984.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novikov, A.M. Thermoanemometric sensors for studying three-dimensional streams. Journal of Engineering Physics 47, 1245–1252 (1984). https://doi.org/10.1007/BF00869928

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00869928

Keywords

Navigation