Advertisement

Journal of engineering physics

, Volume 47, Issue 4, pp 1140–1146 | Cite as

Hydrodynamics of interaction of a gas jet and a liquid

  • V. B. Okhotskii
Article

Abstract

The author investigates regimes of interaction between a liquid and jets of gas discharging from immersed nozzles, and the dimensions of the gas volumes generated.

Keywords

Statistical Physic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    I. P. Ginzburg, V. A. Surin, A. A. Bagautdinov, et al., “Study of the process of discharging a gas stream from an immersed nozzle into a liquid,” Inzh.-Fiz. Zh.,33, No. 2, 213 (1977).Google Scholar
  2. 2.
    S. L. Sullivan, W. B. Hardy, and C. D. Holland, “Formation of air bubbles at orifices submerged beneath liquids,” AIChE J.,10, No. 6, 848 (1964).Google Scholar
  3. 3.
    E. Mayer, “Theory of liquid atomization in high velocity gas streams,” ARS J.,31, No. 12, 1783 (1961).Google Scholar
  4. 4.
    M. Adelberg, “Breakup rate and penetration of a liquid jet in a gas stream,” AIAA J.,5, No. 8, 1408 (1967).Google Scholar
  5. 5.
    B. F. Glikman, “A gas jet in a liquid,” Izv. Akad. Nauk SSSR, Energ. Avtom., No. 1, 39 (1959); No. 2, 135 (1959).Google Scholar
  6. 6.
    I. V. Belov, B. E. Okulov, A. S. Pestryaev, et al., “Stability of the jet regime of a gas discharging into a liquid,” in: Hydro- and Aeromechanics and the Theory of Elasticity [in Russian], No. 20, Dnepropetrovsk State University (1976).Google Scholar
  7. 7.
    M. Sano, Y. Fujita, and K. Mori, “Formation of bubbles at single nonwetted nozzles in mercury,” Met. Trans.,7B, No. 2, 300 (1976).Google Scholar
  8. 8.
    K. Mori, Y. Ozawa, and M. Sano, “A direct observation of the interaction of a gas jet with a liquid metal at a submerged orifice,” Met. Trans.,10B, No. 4, 679 (1979).Google Scholar
  9. 9.
    E. O. Hoefele and J. K. Brimacombe, “Flow regimes in submerged gas injection,” Met. Trans.,10B, No. 4, 631 (1979).Google Scholar
  10. 10.
    G. P. Ivantsov and Z. M. Kudryavtseva, “Investigation of the aerodynamics of an assimilated and nonassimilated gas jet in a liquid,” Proizvod. Stali, No. 21 [in Russian], Metallurgizdat, Moscow (1960).Google Scholar
  11. 11.
    G. N. Oryall and J. K. Brimacombe, “The physical behavior of a gas injected horizontally into a liquid metal,” Met. Trans.,7B, No. 3, 391 (1976).Google Scholar
  12. 12.
    B. E. Gel'fand, S. A. Gubin, S. M. Kogarko, and S. P. Komar, “Peculiarities of breakup of drops of a viscous liquid in shock waves,” Inzh.-Fiz. Zh.,25, No. 3, 467 (1973).Google Scholar
  13. 13.
    M. G. Moiseev, “Discharge of a gas into a liquid through a Laval nozzle,” Inzh.-Fiz. Zh., No. 9, 81 (1962).Google Scholar
  14. 14.
    R. Bell, B. E. Boyce and J. G. Collier, “The structure of a submerged impinging gas jet,” J. Brit. Nucl. Eng. Soc.,11, No. 12, 183 (1972).Google Scholar
  15. 15.
    V. B. Okhotskii, V. I. Baptizmanskii, K. S. Prosvirin, and G. A. Shchedrin, “Structure of the reaction zone with blowing of oxygen into a metal,” Izv. Vyssh. Uchebn. Zaved., Chern. Metall., No. 8, 50 (1973).Google Scholar
  16. 16.
    M. L. Aizenbud and V. V. Dil'man, “Topics in hydraulics of chemical reactors for gas-liquid systems,” Khim. Promysh., No. 3, 51 (1961).Google Scholar
  17. 17.
    A. S. Vasil'ev, V. S. Talachev, V. P. Pavlov, and A. N. Planovskii, “Laws of the discharge of a gas jet into a liquid,” Teor. Osn. Khim. Tekhnol., No. 5, 727 (1970).Google Scholar
  18. 18.
    Yu. A. Buevich and V. V. Butkov, “Mechanism of bubble formation in discharge of a gas into a liquid from a circular aperture,” Teor. Osn. Khim. Tekhnol., No. 1, 74 (1971).Google Scholar
  19. 19.
    P. Patel, “Form und Grosse von Gasblasen in Wasser, Quecksilber und flussigen Eisen,” Arch. Eisenhuttenwesen,44, No. 6, 435–461 (1973).Google Scholar
  20. 20.
    G. Wallis, One-Dimensional Two-Phase Flow, McGraw-Hill (1969).Google Scholar
  21. 21.
    A. E. Wraight, “Two-stage bubble growth at a submerged plate orifice,” Chem. Eng. Sci.,26, No. 10, 1659 (1971).Google Scholar
  22. 22.
    K. Mori, M. Sano, and T. Sato, “The size of bubbles formed at a single nozzle immersed in molten iron,” Trans. JISI Jpn.,19, No. 9, 553 (1979).Google Scholar
  23. 23.
    M. Sano. K. Mori, and Y. Fujita, “Dispersion of gas injected into liquid metal,” JISI Jpn.,65, No. 8, 1140 (1979).Google Scholar
  24. 24.
    L. Davidson and E. H. Amick, “Formation of gas bubbles at horizontal orifices,” AIChE J.,2, No. 3, 337 (1956).Google Scholar
  25. 25.
    V. B. Okhotskii, K. S. Prosvirin, A. N. Kovzik, et al., “Parameters of the zone of interaction of gas jets with a metal with base blowing,” Izv. Vyssh. Uchebn. Zaved., Chern. Metall., No. 3, 34 (1982).Google Scholar

Copyright information

© Plenum Publishing Corporation 1985

Authors and Affiliations

  • V. B. Okhotskii
    • 1
  1. 1.Dnepropetrovsk Metallurgical InstituteUSSR

Personalised recommendations