Theoretica chimica acta

, Volume 27, Issue 4, pp 325–338 | Cite as

CNDO/2 calculations and configuration analyses for some hydrogen-bonded systems

  • H. Morita
  • S. Nagakura


The potential energy curves of hydrogen-bonded systems were calculated for the water, methanol, and formic acid dimers and for the hydrogen maleate ion by a modified CNDO/2 method, the core resonance integrals betweenσ-electrons being distinguished from those betweenπ-electrons, the different bonding parameters being used for -O- and =O, and the core potential integralsV AB c for O-H, C=O, and O...O being determined semi-empirically. Consequently, the following results were obtained: 1) a potential energy curve with a single minimum atr(O-H)=0.95 Å and with a concavity near 1.70 Å for the linear chain dimers of water and methanol; 2) a symmetrical potential energy curve with two minima atr(O-H)=0.95 and 1.78 Å for the cyclic dimer of formic acid; 3) a flat-bottomed symmetrical potential energy curve for the hydrogen maleate ion. The configuration analysis method was applied to the hydrogen-bonded systems; the contributions of the covalent ((O-H-O)−1) and ionic (OH+O) structures being 54% and 39%, respectively, for the symmetrical hydrogen bonding of the hydrogen maleate ion.


Methanol Formic Acid CH3OH Linear Chain HCOOH 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Die Kurven potentieller Energie von Systemen mit H-Brücken wurden im Fall von H2O-, CH3OH- und HCOOH-Dimeren und für das Hydrogen-Maleatanion mittels eines modifizierten CNDO-Verfahrens berechnet, wo für Rumpf-σ- und -π-Elektronen jeweils verschiedene Resonanzintegrale und verschiedene Bindungsparameter für =O und -O- verwendet und wo die Rumpfpotential-Integrale für O-H, C=O und O...O semiempirisch bestimmt werden.

Die Resultate sind 1) eine Potentialkurve mit einem einfachen Minimum für lineare Ketten von H2O und CH3OH, 2) eine symmetrische Potentialkurve mit zwei Minima für das cyclische Diniere von HCOOH und 3) eine Potentialkurve mit einem flachen Minimum für das Maleatanion. Konfigurationsanalyse ergab einen Beitrag von 39% für die ionischen Strukturen.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rein, R., Harris, F.E.: J. chem. Physics43, 4415 (1965).Google Scholar
  2. 2.
    Lunell, S., Sperber, G.: J. chem. Physics46, 2119 (1967).Google Scholar
  3. 3.
    Murthy, A.S.N., Davis, R.E., Rao, C.N.R.: Theoret. chim. Acta (Berl.)13, 81 (1969).Google Scholar
  4. 4.
    Hoyland, J.R., Kier, L.B.: Theoret. chim. Acta (Berl.)15, 1 (1969).Google Scholar
  5. 5.
    Schuster, P.: Int. J. quant. Chemistry3, 851 (1969).Google Scholar
  6. 6.
    Clementi, E., Mehl, J., Niessen, W.: J. chem. Physics54, 508 (1971).Google Scholar
  7. 7.
    Morokuma, K., Pedersen, L.: J. chem. Physics48, 3275 (1968).Google Scholar
  8. 8.
    Morita, H., Nagakura, S.: J. molecular Spectroscopy42, 536 (1972).Google Scholar
  9. 9.
    Pople, J.A., Santry, D.P., Segal, G.A.: J. chem. Physics43, S129 (1965).Google Scholar
  10. 10.
    Pople, J.A., Segal, G.A.: J. chem. Physics43, S136 (1965);44, 3289 (1966).Google Scholar
  11. 11.
    Klopman, G.: J. Amer. chem. Soc.86, 4550 (1964);87, 3300 (1965).Google Scholar
  12. 12.
    Del Bene, J, Jaffé, H.H.: J. chem. Physics48, 1807, 4050 (1968).Google Scholar
  13. 13.
    Tinland, B.: Molecular Physics16, 413 (1969).Google Scholar
  14. 14.
    Pariser, R., Parr, R.G.: J. chem. Physics21, 466 (1953);21, 767 (1953).Google Scholar
  15. 15.
    Pople, J.A.: Proc. physic. Soc.A68, 81 (1955).Google Scholar
  16. 16.
    Liddel, U., Becker, E.D.: Spectrochim. Acta10, 70 (1957); Becker,E.D.: In: Hydrogen bonding, ed. by Hadži,D. P. 155–162. New York: Pergamon Press 1959.Google Scholar
  17. 17.
    Becker, E.D., Liddel, U., Shoolery, J.N.: J. molecular Spectroscopy2, 1 (1958).Google Scholar
  18. 18.
    Smith, F.A., Creitz, E.C.: J. Res. Nat. Bur. Stand.46, 145 (1951).Google Scholar
  19. 19.
    van Thiel, M., Becker, E.D., Pimentel, G.C.: J. chem. Physics27, 95 (1957).Google Scholar
  20. 20.
    Weltner, W.,Jr., Pitzer, K.S.: J. Amer. chem. Soc.73, 2606 (1951).Google Scholar
  21. 21.
    Baba, H., Suzuki, S., Takemura, T.: J. chem. Physics50, 2078 (1969).Google Scholar
  22. 22.
    Kimura, K., Kubo, M.: J. chem. Physics30, 151 (1959).Google Scholar
  23. 23.
    Karle, J., Brockway, L.O.: J. Amer. chem. Soc.66, 574 (1944).Google Scholar
  24. 24.
    Harvey, G.G.: J. chem. Physics6, 111 (1938).Google Scholar
  25. 25.
    Darlow, S.F., Cochran, W.: Acta crystallogr.14, 1250 (1961); Darlow,S.F.: Acta crystallogr.14, 1257 (1961).Google Scholar
  26. 26.
    Kishida, S., Nakamoto, K.: J. chem. Physics41, 1558 (1964); Nakamoto,K., Kishida,S.: J. chem. Physics41, 1554 (1964).Google Scholar
  27. 27.
    Benedict, W.S., Gallar, N., Plyler, E.K.: J. chem. Physics24, 1139 (1956).Google Scholar
  28. 28.
    Kwei, G.H., Curl, R.F., Jr.: J. chem. Physics32, 1592 (1960).Google Scholar
  29. 29.
    Lerner, R.G., Dailey, B.P., Friend, J.P.: J. chem. Physics26, 680 (1957).Google Scholar
  30. 30.
    Zachariasen, W.H.: J. Amer. chem. Soc.62, 1011 (1940).Google Scholar
  31. 31.
    Peterson, S.W., Levy, H.A.: Physic. Review92, 1082 (1953).Google Scholar
  32. 32.
    Millikan, R.C., Pitzer, K.S.: J. Amer. chem. Soc.80, 515 (1958); Bratož,S., Hadži,D., Sheppard,N.: Spectrochim. Acta8, 249 (1956).Google Scholar
  33. 33.
    Cardwell, H.M.E., Dunitz, J.D., Orgel, L.E.: J. chem. Soc. 1953, 3740; Blinc,R., Hadži,D., Novak,A.: Z. Electrochem.64, 566 (1960); Nakamoto,K., Sarma,Y.A., Behnke,G.T.: J. chem. Physics42, 1662 (1965).Google Scholar
  34. 34.
    Tsubomura, H.: Bull. chem. Soc. Japan27, 445 (1954).Google Scholar
  35. 35.
    McClellan, A.L.: Tables of experimental dipole moments. San Francisco, California: Freeman, W. H. and Company 1963.Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • H. Morita
    • 1
  • S. Nagakura
    • 1
  1. 1.The Institute for Solid State PhysicsThe University of TokyoTokyoJapan

Personalised recommendations