Advertisement

Pediatric Nephrology

, Volume 9, Issue 6, pp 705–710 | Cite as

Glomerular and tubular function in glycogen storage disease

  • Philip J. Lee
  • R. Neil Dalton
  • Vanita Shah
  • Peter C. Hindmarsh
  • James V. Leonard
Original Article

Abstract

Urinary protein and calcium excretion were assessed in 77 patients with the hepatic glycogen storage diseases (GSD): 30 with GSD-I (median age 12.4 years, range 3.2–32.9 years), 25 with GSD-III (median age 10.5 years, range 4.2–31.3 years) and 22 with GSD-IX (median age 11.8 years, range 1.2–35.4 years). Inulin (Cinulin) and para-aminohippuric acid (CPAH) clearances were also measured in 33 of these patients. Those with GSD-I had significantly greater albumin (F=15.07,P<0.001), retinolbinding protein (RBP) (F=14.66,P<0.001),N-acetyl-β-d glucosaminidase (NAG) (F=9.41,P<0.001) and calcium (F=7.41,P=0.001) excretion than those with GSD-III and GSD-IX. GSD-I patients (n=18) also had significantly higherCinulin (F=5.57,P=0.009), butCPAH did not differ (F=0.77, NS). Renal function was normal in GSD-III and GSD-IX patients. In GSD-I,Cinulin (r=−0.51,P=0.03) and NAG excretion (r=−0.40,P=0.03) were inversely correlated with age, whereas albumin excretion was positively correlated with age (r=+0.41,P=0.03). RBP and calcium excretion were generally high throughout all age groups. Hyperfiltration in GSD-I is associated with renal tubular proteinuria that occurs before the onset of significant albuminuria. Deficiency of glucose-6-phosphatase within the proximal renal tubule may primarily cause tubular dysfunction, glomerular hyperfiltration being a secondary phenomenon.

Key words

Glycogen storage disease Hyperfiltration Proteinuria Hypercalciuria Tubular function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burchell A (1992) The molecular basis of the type 1 glycogen storage diseases. Bioessays 14: 395–400Google Scholar
  2. 2.
    Moses SW (1991) Pathophysiology and dietary treatment of the glycogen storage diseases. J Pediatr Gastroenterol Nutr 11: 155–174Google Scholar
  3. 3.
    Roe TF, Thomas DW, Gilsanz V, Isaacs H, Atkinson JB (1986) Inflammatory bowel disease in glycogen storage disease type Ib. J Pediatr 109: 55–59Google Scholar
  4. 4.
    McCawley LJ, Korchak HM, Douglas SD, Campbell DE, Thornton PS, Stanley CA, Baker L, Kilpatrick L (1994) In vitro and in vivo effects of granulocyte colony-stimulating factor on neutrophils in glycogen storage disease type 1b: granulocyte colonystimulating factor therapy corrects the neutropenia and the defects in respiratory burst activity and Ca2+ mobilization. Pediatr Res 35: 84–90Google Scholar
  5. 5.
    Hers H-G, Van Hoof F, De Barsy T (1989) Glycogen storage diseases. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic basis of inherited disease, 6th edn. MacGraw-Hill, New York, pp 425–452Google Scholar
  6. 6.
    Von Gierke E (1929) Hepato-nephromegalia glykogenica (Glykogenspeicherkrankheit der Leber und Nieren). Beitr Pathol Anat 82: 497–513Google Scholar
  7. 7.
    Holling HE (1963) Gout and glycogen storage disease. Ann Intern Med 58: 654–663Google Scholar
  8. 8.
    Chen Y-T, Coleman RA, Scheinman JI, Kolbeck PC, Sidbury JB (1988) Renal disease in type 1 glycogen storage disease. N Engl J Med 318: 7–11Google Scholar
  9. 9.
    Baker L, Dahlem S, Goldfarb S, Kern EFO, Stanley CA, Egler J, Olshan JS, Heyman S (1989) Hyperfiltration and renal disease in glycogen storage disease, type I. Kidney Int 35: 1345–1350Google Scholar
  10. 10.
    Reitsma-Bierens CC, Smith GPA, Troelstra JA (1992) Renal function and kidney size in glycogen storage disease type I. Pediatr Nephrol 6: 236–238Google Scholar
  11. 11.
    Obara K, Saito T, Sato H, Ogawa M, Igarashi Y, Yoshinaga K (1993) Renal histology in two adult patients with type 1 glycogen storage disease. Clin Nephrol 39: 59–64Google Scholar
  12. 12.
    Matsuo N, Tsuchiya Y, Cho H, Nagai T, Tsuji A (1986) Proximal renal tubular acidosis in a child with type 1 glycogen storage disease. Acta Paediatr Scand 75: 332–335Google Scholar
  13. 13.
    Chen Y-T, Scheinman JI, Park HK, Coleman RA, Roe CR (1990) Amelioration of proximal renal tubular dysfunction in type I glycogen storage disease with dietary therapy. N Engl J Med 323: 590–593Google Scholar
  14. 14.
    Restaino I, Kaplan BS, Stanley C, Baker L (1993) Nephrolithiasis, hypocitraturia, and a distal renal tubular acidification defect in type 1 glycogen storage disease. J Pediatr 122: 392–396Google Scholar
  15. 15.
    Cohen J, Friedman M (1979) Renal tubular acidosis associated with type III glycogenosis. Acta Paediatr Scand 68: 779–782Google Scholar
  16. 16.
    Nagai T, Matsuo N, Tsuchiya Y, Cho H, Hasegawa Y, Igarashi Y (1988) Proximal renal tubular acidosis associated with glycogen storage disease, type 9. Acta Paediatr Scand 77: 460–463Google Scholar
  17. 17.
    Sanjad SA, Kaddoura RE, Nazer HM, Ahkhatar M, Sakati NA (1993) Fanconi's syndrome with hepatorenal glycogenosis associated with phosphorylase b kinase deficiency. Am J Dis Child 147: 957–959Google Scholar
  18. 18.
    Task Force on Blood Pressure Control in Children (1987) Report of the second task force on blood pressure control in children—1987. Pediatrics 79: 1–25Google Scholar
  19. 19.
    Topping MD, Forster HW, Dolman C, Lucynska CM, Bernard AM (1986) Measurement of urinary retinol binding protein by enzymelinked immunosorbent assay and its application to the detection of tubular proteinuria. Clin Chem 32: 1863–1866Google Scholar
  20. 20.
    Dalton RN, Turner C (1987) A sensitive and specific method for the measurement of inulin. Ann Clin Biochem [Suppl 1]: S1-S31Google Scholar
  21. 21.
    Bratton AC, Marshall EK (1939) A new coupling component for sulfanimide determination. J Biol Chem 128: 537–550Google Scholar
  22. 22.
    Hahn-Ulrich H, Sciuk J, Bartenstein P, Kreysing P, Ullrich K (1993) Effective renal plasma flow in patients with glycogen storage disease type I. Eur J Pediatr 152: 674–676Google Scholar
  23. 23.
    Woods LL (1993) Mechanisms of renal hemodynamic regulation in response to protein feeding. Kidney Int 44: 659–675Google Scholar
  24. 24.
    Trevisan R, Nosadini R, Fioretto P, Velussi M, Avogaro A, Duner E, Iori E, Doria A, Merkel C, Valerio A, Crepaldi G (1987) Metabolic control of kidney hemodynamics in normal and insulin-dependent diabetic subjects. Effects of acetoacetic, lactic and acetic acids. Diabetes 36: 1073–1081Google Scholar
  25. 25.
    Johannesen J, Lie M, Kiil F (1977) Effect of glycine and glucagon on glomerular filtration and renal metabolic rates. Am J Physiol 233: F61-F66Google Scholar
  26. 26.
    Blankestijn PJ, Derkx FHM, Birkenhager JC, Lamberts SWJ, Mulder P, Verschoor L, Schalekamp MADH, Weber RFA (1993) Glomerular hyperfiltration in insulin-dependent diabetes mellitus is correlated with enhanced growth hormone secretion. J Clin Endocrinol Metab 77: 498–502Google Scholar
  27. 27.
    Hirschberg R, Brunori G, Kopple JD, Guler H-P (1993) Effects of insulin-like growth factor I on renal function in normal men. Kidney Int 43: 387–397Google Scholar
  28. 28.
    Schmitz G, Hohage H, Ullrich K (1993) Glucose-6-phosphate: a key compound in glycogenosis I and favism leading to hyper-or hypolipidaemia. Eur J Pediatr 152 [Suppl 1]: S77-S84Google Scholar
  29. 29.
    Kapelrud H, Bangstad H-J, Dahl-Jorgensen, Berg K, Hansen KF (1991) Serum Lp(a) lipoprotein concentrations in insulin dependent diabetic patients with microalbuminuria. BMJ 303: 675–678Google Scholar
  30. 30.
    Greene HL, Swift LL, Knapp HR (1991) Hyperlipidemia and fatty acid composition in patients treated for type Ia glycogen storage disease. J Pediatr 119: 398–403Google Scholar
  31. 31.
    Wolfsdorf JI, Plotkin RA, Laffel LMB, Crigler JF (1990) Continuous glucose for treatment of patients with type 1 glycogenstorage disease: comparison of the effects of dextrose and uncooked conrnstarch on biochemical variables. Am J Clin Nutr 52: 1043–1050Google Scholar
  32. 32.
    Debermudez L, Hayslett JP (1972) Effect of methylprednisolone on renal function and the zonal distribution of blood flow in the rat. Circ Res 31: 44–52Google Scholar
  33. 33.
    Friedman PA, Figuciredo JF, Maack T, Windhager EE (1981) Sodium-calcium interactions in the renal proximal convoluted tubule of the rabbit. Am J Physiol. 240: F558-F568Google Scholar
  34. 34.
    Smith GC, Winterborn MH, Taylor CM, Lawson N, Guy M (1994) Assessment of retinol-binding protein excretion in normal children. Pediatr Nephrol 8: 148–150Google Scholar
  35. 35.
    Bernard AM, Moreau D, Lauwerys R (1982) Comparison of retionl binding protein and β2-microglobulin determination in urine for the early detection of tubular proteimuria. Clin Chim Acta 126: 1–7Google Scholar
  36. 36.
    Sherman RL, Drayer DE, Leyland-Jones BR, Reidenberg MM (1983) N-acetyl-glucosaminidase and β2-microglobulin. Their urinary excretion in patients with renal parenchymal disease. Arch Intern Med 143: 1183–1185Google Scholar
  37. 37.
    Sadeghi-Nejad A, Presente E, Binkiewicz A, Senior B (1974) Studies in type I glycogenosis of the liver. The genesis and disposition of lactate. J Pediatr 85: 49–54Google Scholar
  38. 38.
    Kalderon B, Korman SH, Gutman A, Lapidot A (1989) Glucose recycling and production in glycogenosis type I and III: stable isotope technique study. Am J Physiol 257: E346-E353Google Scholar
  39. 39.
    Oberhaensli RD, Rajagopalan B, Taylor DJ, Radda GK, Collins JE, Leonard JV (1988) Study of liver metabolism in glucose-6-phosphatase deficiency (glycogen storage disease type 1a) by P-31 magnetic resonance spectroscopy. Pediatr Res 23: 375–380Google Scholar
  40. 40.
    Scheinman JI (1994) Glycogen storage disease. In: Holliday MA, Barratt TM, Avner ED (eds) Pediatric nephrology. Williams and Wilkins, Baltimore, pp 572–575Google Scholar
  41. 41.
    Fine LG, Ong ACM, Norman JT (1993) Mechanisms of tubulointerstitial injury in progressive renal diseases. Eur J Clin Invest 23: 259–265Google Scholar
  42. 42.
    Baker L, Kern EFO, Olshan J, Goldfarb S, Dahlem ST (1988) Pilot study of captopril in patients with renal disease associated with glycogen storage disease, type I (GSD-I). Pediatr Res 23: 388AGoogle Scholar

Copyright information

© IPNA 1995

Authors and Affiliations

  • Philip J. Lee
    • 1
  • R. Neil Dalton
    • 2
  • Vanita Shah
    • 3
  • Peter C. Hindmarsh
    • 1
  • James V. Leonard
    • 1
  1. 1.The International Growth Research Centre at the London Centre for Paediatric Endocrinology and MetabolismInstitute of Child HealthLondonUK
  2. 2.Department of Paediatric BiochemistryGuy's HospitalLondonUK
  3. 3.Department of Renal BiochemistryInstitute of Child HealthLondonUK

Personalised recommendations