Soviet Physics Journal

, Volume 8, Issue 5, pp 109–114 | Cite as

On the magnetocrystalline anisotropy of nickel-iron ferrites

  • A. I. Drokin
  • N. I. Sudakov
  • S. Sh. Gendelev
  • E. M. Kondrat'ev
  • L. I. Ryabinkina
Article

Abstract

In order to determine regularities in the temperature dependence of the magnetocrystalline anisotropy of nickel-iron ferrites, studies of single-crystal spheres of these ferrites of various compositions were made by the torque method. It was established that the function K1 (T) is affected by the presence of ions of bivalent iron (the presence of cobalt ions in the samples or in the charge was not detected by either chemical or x-ray methods). In the absence of ions of bivalent iron, K1 decreases in absolute value with rise in temperature, always remaining negative. With increased concentrations of Fe2 ions, K1 can have a positive sign at high and low temperatures, and a negative sign in the intermediate temperature range.

The function K1(T) is affected by initial brief high-temperature (900 ° C, 2 hr) and prolonged low-temperature (300–350 ° C, 2 days) heat treatment of the single crystals. It was established that the heat treatments also affect other magnetic and electric properties of the single crystals studied.

Keywords

Iron Anisotropy Torque Heat Treatment Ferrite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Yosida and M. Tachiki, Progr. Theor. Phys., 17, 331, 1957.Google Scholar
  2. 2.
    W. A. Yager, K. Galt, F. R. Merritt, and E. A. Wood, Phys. Rev., 80, 744, 1950.Google Scholar
  3. 3.
    R. M. Bozarth, E. F. Tilden, and A. J. Williams, Phys. Rev., 99, 6, 1788, 1955.Google Scholar
  4. 4.
    M. Menyuk and K. Dwight, J. Appl. Phys., 30, 4, 36, 1959.Google Scholar
  5. 5.
    G. Elbinger, Naturwiss., 46, 4, 140, 1959.Google Scholar
  6. 6.
    N. Z. Miryasov, collection: Ferrites [in Russian], p. 199, Izd. AN BSSR, Minsk, 1960.Google Scholar
  7. 7.
    N. Miyata, J. Phys. Soc. Japan., 16, 7, 1291, 1961.Google Scholar
  8. 8.
    A. A. Askochenskii and T. M. Perekalina, ZhETF, 43, 3(9), 481, 1962.Google Scholar
  9. 9.
    L. G. Uitert, Journ. Chem. Phys., 24, 306, 1956.Google Scholar
  10. 10.
    N. L. Bryukhatov and L. V. Kirenskii, ZhETF, 8, 198, 1938.Google Scholar
  11. 11.
    C. J. Kriessman, S. E. Harrison and H. S. Belson, J. Appl. Phys., 29, 452, 1958.Google Scholar
  12. 12.
    R. M. Bozorth, B. B. Cetlin, K. Galt, F. M. Merritt, and W. A. Yager, Phys. Rev., 99, 1898, 1955.Google Scholar
  13. 13.
    C. D. Graham, “Magnetic properties of metals and Alloys,” Cleveland, 1958.Google Scholar
  14. 14.
    R. Wagner, Ann. f. Phys., 7, 5–6, 302, 1961.Google Scholar
  15. 15.
    M. Kersten, Zs. f. Phys., 8, 313, 1956.Google Scholar
  16. 16.
    K. Ohta, J. Phys. Soc. Japan., 18, 5, 685, 1963.Google Scholar
  17. 17.
    C. M. Burgt, Philips Res. Rep., 12, 97, 1957.Google Scholar
  18. 18.
    L. Néel, J. Phys. Radium., 15, 225, 1954.Google Scholar
  19. 19.
    S. Taniguchi and M. Yamamoto, Sci. Rep. Tahoku Imp. Univ. Ritu., A6, 330, 1954; S. Taniguchi, A9, 196, 1957; T. Iwata, A10, 34, 1957.Google Scholar
  20. 20.
    A. P. Komar and V. V. Klyushin, Izv. AN SSSR, ser. fiz., 18, 400, 1954.Google Scholar
  21. 21.
    A. S. Mil'ner and O. P. Kirichenko, DAN USSR, Fizika, no. 3, 258, 1955.Google Scholar
  22. 22.
    Z. I. Novikova, Author's abstract of dissertation, Leningrad Polytechnic Institute, 21, 4, 351, 1962.Google Scholar
  23. 23.
    J. Baszunski, Acta Physica Polonica., 21, 4, 351, 1962.Google Scholar
  24. 24.
    A. V. Zalesskii, Kristallografiya, 7, 2, 321, 1962.Google Scholar

Copyright information

© The Faraday Press, Inc. 1968

Authors and Affiliations

  • A. I. Drokin
    • 1
  • N. I. Sudakov
    • 1
  • S. Sh. Gendelev
    • 1
  • E. M. Kondrat'ev
    • 1
  • L. I. Ryabinkina
    • 1
  1. 1.Siberian Division AS USSRInstitute of PhysicsKrasnoyarsk

Personalised recommendations