Journal of Geodesy

, Volume 70, Issue 10, pp 633–644 | Cite as

On the separation of gravitation and inertia and the determination of the relativistic gravity field in the case of free motion

  • Wenbin Shen
  • Helmut Moritz


The authors explored the possibility of separating gravitation from inertia in the frame of general relativity. The Riemann tensor is intimately related with gravitational fields and has nothing to do with inertial effects. One can judge the existence or nonexistence of a gravitational field according as the Riemann tensor does not vanish or vanishes. In the free fall case, by using a gradiometer on a satellite, gravitational effects can be separated from inertia completely. Furthermore, the authors put forward a general method of determining the relativistic gravity field by using gradiometers mounted on satellites. At the same time the following two statements are proved: in the case of using gradiometers on a satellite, with some kind of approximation the Riemann tensorRμναβ can be found; in the case of free motion, if the measured Riemannian componentsR(i0j0) are equal to zero, the Riemann tensorRμναβ equals zero.


General Relativity Gravitational Field Gravity Field Free Motion Inertial Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bell C C et al. (1969) Static Gravitational Gradient Field Detection with a Rotating Torsional Gradiometer. National Aeronautics and Space Laboratory.Google Scholar
  2. Bell C C, Forward R L, Williams H (1970) Simulated Terrain Mapping with the Rotating Gravity Gradiometer. In: Kattner W T (ed), Advances in Dynamic Gravimetry. Instrument Society of America, Pittsburgh, pp 115–129.Google Scholar
  3. Bjerhammar A (1985) On a Relativistic Geodesy. Bulletin Géodésique 59: 207–220.Google Scholar
  4. Bjerhammar A (1986) Relativistic Geodesy. NOAA Technical Rep., NON118 NGS36.Google Scholar
  5. Damour T (1991) General-relativistic Celestial Mechanics. I. Method and Definition of Reference Systems. Physical Review 43D: 3273–3307.Google Scholar
  6. Dicke R H (1964) Experimental Relativity. In: DeWitt C, DeWitt B (eds), Relativity, Groups and Topology, Gordon and Breach, New York, pp 165–313.Google Scholar
  7. Fock V (1961) The Theory of Space, Time, and Gravitation (N.Kemmer tran. from the Russian publ. 1955). Bergamon Press (2nd rev. ed 1966, repr. 1969, 1976), New York.Google Scholar
  8. Forward R L (1971) Moving-Base Rotating Gravity Gradiometer Development. Res. Rep. No. 461, Hughes Research Laboratories, California.Google Scholar
  9. Forward R L (1972) Geodesy with Orbiting Gravity Gradiometers. In: Veis G (ed), The Use of Artificial Satellite for Geodesy. Geophysical Monograph, V.15, American Geophysical Union, Washington, pp 239–243.Google Scholar
  10. Forward R L (1974) Review of Artificial Satellite Gravity Gradiometer Techniques for Geodesy. In: Veis G (ed), The Use of Artificial Satellite for Geodesy and Geodynamics, Geophysical Monograph, V.17, American Geophysical Union, Washington, pp 157–192.Google Scholar
  11. Grafarend E W (1989) Four Lectures on Special and General Relativity. In: Sanso F, Rummel R (eds), Theory of Satellite Geodesy and Gravity Field Determination, Springer, Berlin.Google Scholar
  12. Grafarend E W, Joos E (1992) Relativistic Computation of Geodetic Satellite Orbits. In: Linkwitz K, Hangleiter U (eds), High Precision Navigation 91, Dümmler Verlag, Bonn.Google Scholar
  13. Grafarend E W, Schwarze V S (1991) Relativistic GPS Positioning. In: Caputo M, Sanso F (eds), Proceedings of the Geodesic Day in Honor of Antonio Marussi, Accademia Nazionale dei Lincei.Google Scholar
  14. Haugan M P (1979) Energy Conservation and the Principle of Equivalence. Ann. Phys. (N.Y.) 118: 156–186.Google Scholar
  15. Koop R (1993) Global Gravity Field Modelling Using Satellite Gravity Gradiometry. Netherland Geodesic Commission, Number 38.Google Scholar
  16. Misner C W, Thorne K S, Wheeler J A (1973) Gravitation. W.H.Freeman and Company, San Francisco.Google Scholar
  17. Moritz H (1985) Inertia and Gravitation in Geodesy. In: Schwarz K P (ed), Inertial Technology for Surveying and Geodesy, Banff.Google Scholar
  18. Moritz H (1968) Kinematical Geodesy. Deutsche Geodätische Kommission, Reihe A: Höhere Geodäsie-Heft Nr.59.Google Scholar
  19. Moritz H (1975) Lecture Notes on Kinematical Geodesy. Bollettino di Geodesia e Scienze Affini 34: 145–160.Google Scholar
  20. Moritz H, Hofmann-Wellenhof B (1993) Geometry, Relativity, Geodesy. Wichmann, Karlsruhe.Google Scholar
  21. Nordtvedt K Jr (1975) Quantitative Relationship Between Clock Gravitational Redshift Violations and Non-universality of Free-fall Rates in Non-metric Theories of Gravity. Physical Review 11D: 245–247.Google Scholar
  22. Ohanian H C (1976) Gravitation and Spacetime. W.W.Norton & Company, Inc.Google Scholar
  23. Rummel R (1986) Satellite Gradiometry. In: Sünkel H (ed), Lecture Notes in Earth Science, Vol.7, Mathematical and Numerical Techniques in Physical Geodesy.Google Scholar
  24. Rummel R, Colombo O L (1985) Gravity Field Determination from Satellite Gradiometry. Bulletin Géodésique 59: 233–246.Google Scholar
  25. Schiff L I (1960) On Experimental Tests of the General Theory of Relativity. Am. J. Phys. 28: 340–343.Google Scholar
  26. Schwarze V S (1995) Satellitengeodätische Positionierung in der Relativistischen Raum-Zeit. Ph.D Dissertation, Universität Stuttgart.Google Scholar
  27. Shen W, Chao D, Jin B (1993) On the Relativistic Geoid. Bollettino di Geodesia e Scienze Affini 52: 207–216.Google Scholar
  28. Shen W, Moritz H (1996) On the Separation of Gravitation and Inertia in Airborne Gradiometry. Bollettino di Geodesia e Scienze Affini 55 (N.2, accepted).Google Scholar
  29. Soffel M H (1989) Relativity in Astrometry, Celestial Mechanics and Geodesy. Springer-Verlag, Berlin.Google Scholar
  30. Stephani H (1982) General Relativity: An introduction to the theory of the gravitational field. Cambridge University Press, Cambridge.Google Scholar
  31. Synge J L (1960) Relativity: The general theory. North-Holland Publishing Company, Amsterdam (fourth printing 1971).Google Scholar
  32. Theiss D S (1985a) A General Relativistic Effect of a Rotating Spherical Mass and the Possibility of Measuring It in a Space Experiment. Physics Letters 109A: 19–22.Google Scholar
  33. Theiss D S (1985b) A New Gravitational Effect of a Deformed Mass. Physics Letters 109A: 19–22.Google Scholar
  34. Thorne K S, Lee D L, Lightman A P (1973) Foundations of a Theory of Gravitation Theories. Physical Review 7D: 3567–3578.Google Scholar
  35. Wald R M (1984) General Relativity. The University of Chicago Press, Chicago.Google Scholar
  36. Weinberg S (1972) Gravitation and Cosmology. John Wiley & Sons, New York.Google Scholar
  37. Will C M (1993) The Theory and Experiment in Gravitational Physics (Rev. ed., 1st pub. 1981). Cambridge University Press, Cambridge.Google Scholar
  38. You R J (1995) Zur Analytischen Bahnberechnung Küstlicher Erdsatelliten Mittels Konformer Transformationen. Deutsche Geodätische Kommission, Reihe C: Heft Nr. 440.Google Scholar
  39. Zhu S Y, Groten E (1988a) Relativistic Effects in GPS. In: Groten E, Strauß R (eds), GPS-Techniques Applied to Geodesy and Surveying, Springer, Berlin, Heidelberg, New York.Google Scholar
  40. Zhu S Y, Groten E (1988b) Relativistic Effects in VLBI Time Delay Measurement. Manuscripta Geodaetica 13: 33–39.Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Wenbin Shen
    • 1
  • Helmut Moritz
    • 1
  1. 1.Section of Physical GeodesyTechnical University GrazGrazAustria

Personalised recommendations