Skip to main content
Log in

On the universality of the velocity profiles of a turbulent flow in an axially rotating pipe

  • Published:
Applied Scientific Research Aims and scope Submit manuscript

Abstract

If a fluid enters an axially rotating pipe, it receives a tangential component of velocity from the moving wall, and the flow pattern change according to the rotational speed. A flow relaminarization is set up by an increase in the rotational speed of the pipe. It will be shown that the tangential- and the axial velocity distribution adopt a quite universal shape in the case of fully developed flow for a fixed value of a new defined rotation parameter. By taking into account the universal character of the velocity profiles, a formula is derived for describing the velocity distribution in an axially rotating pipe. The resulting velocity profiles are compared with measurements of Reich [10] and generally good agreement is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

b :

constant, equation (34)

D :

pipe diameter

l :

mixing length

l 0 :

mixing length in a non-rotating pipe

N :

rotation rate,N=Re ϕ /Re D

p :

pressure

R :

pipe radius

Re D :

flow-rate Reynolds number,\(\operatorname{Re} _D = \bar v_z D/v\)

Re ϕ :

rotational Reynolds number, Re ϕ =v ϕw D/ν

Re*:

Reynolds number based on the friction velocity, Re*=v*R/ν

(Re*)0 :

Reynolds number based on the friction velocity in a non-rotating pipe

Ri:

Richardson number, equation (10)

r :

coordinate in radial direction

\(\tilde r\) :

dimensionless coordinate in radial direction,\(\tilde r = r/R\)

v r ,v ϕ,v z :

time mean velocity components

v′ r ,v′ ϕ ,v′ z :

velocity fluctations

v ϕw :

tangential velocity of the pipe wall

v*:

friction velocity,\(v_* = \sqrt {\left| {\tau _{rz} } \right|w/\rho } \)

\(\bar v_z \) :

axial mean velocity

v ZM :

maximum axial velocity

\(\tilde y\) :

dimensionless radial distance from pipe wall,\(\tilde y = 1 - \tilde r\)

y + :

dimensionless radial distance from pipe wall

y +1 :

constant

Z :

rotation parameter,Z =v ϕw/v * =N Re D /2Re*

ε m :

eddy viscosity

(ε m )0 :

eddy viscosity in a non-rotating pipe

λ :

coefficient of friction loss

κ :

von Karman constant

κ 1 :

constant, equation (31)

ρ :

density

μ :

dynamic viscosity

ν :

kinematic viscosity

References

  1. Borisenko, A.I., Kostikov, O.N. and Chumachenko, V.I., Experimental study of turbulent flow in a rotating channel.J. Engng. Phys. 24 (1973) 770–773.

    Google Scholar 

  2. Hirai, S. and Takagi, T., Prediction of heat transfer deterioration in turbulent swirling pipe flow. In:Proc. 2nd ASME/JSME Thermal Engng. Joint Conf. 5 (1987) pp. 181–187.

    Google Scholar 

  3. von Kármán, T., Über laminare und turbulente Reibung.Z. Ang. Math. Mech. 1 (1921) 233–251.

    Google Scholar 

  4. Kikuyama, K., Murakami, M., Nishibori, K. and Maeda, K., Flow in an axially rotating pipe.Bull. JSME 26 (1983) 506–513.

    Google Scholar 

  5. Koosinlin, M.L., Launder, B.E. and Sharma, B.I., Prediction of momentum, heat and mass transfer in swirling, turbulent boundary layers.J. Heat Transfer 96 (1975) 204–209.

    Google Scholar 

  6. F. Levy, Strömungserscheinungen in rotierenden Rohren.VDI Forsch. Arb. Geb. Ing. Wes. 322 (1929) 18–45.

    Google Scholar 

  7. Murakami, M. and Kikuyama, K., Turbulent flow in axially rotating pipes.J. Fluids Engng. 102 (1980) 97–103.

    Google Scholar 

  8. Lord Rayleigh, On the dynamics of revolving fluids. In:Proc. R. Soc. A93 (1917) pp. 148–154.

    Google Scholar 

  9. Reichardt, H., Vollständige Darstellung der turbulenten Geschwindigkeitsverteilung in glatten Leitungen.Z. Ang. Math. Mech. 31 (1951) 208–219.

    Google Scholar 

  10. Reich, G. and Beer, H., Fluid flow and heat transfer in an axially rotating pipe — I. Effect of rotation on turbulent pipe flow.Int. J. Heat Mass Transfer 32 (1989) 551–562.

    Google Scholar 

  11. Schlichting, H., Grenzschicht-Theorie. Karlsruhe: G. Braun (1982).

    Google Scholar 

  12. Shchukin, V.K., Hydraulic resistance of rotating tubes.J. Engng. Phys. 12 (1967) 418–422.

    Google Scholar 

  13. Taylor, G.I., Stability of a viscous liquld contained between two rotating cylinders.Phil. Trans. R. Soc. London A223 (1923) 289–343.

    Google Scholar 

  14. Tietjens, O., Ströhmungslehre, Zweiter Band. Berlin/Heidelberg/New York: Springer (1970).

    Google Scholar 

  15. White, A., Flow of fluid in an axially rotating pipe.J. Mech. Engng. Sci. 6 (1964) 47–52.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weigand, B., Beer, H. On the universality of the velocity profiles of a turbulent flow in an axially rotating pipe. Appl. Sci. Res. 52, 115–132 (1994). https://doi.org/10.1007/BF00868054

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00868054

Keywords

Navigation