Theoretical and Applied Climatology

, Volume 57, Issue 1–2, pp 119–124 | Cite as

Assessments of the global anthropogenic greenhouse and sulfate signal using different types of simplified climate models

  • C. -D. Schönwiese
  • M. Denhard
  • J. Grieser
  • A. Walter
Short Communication

Summary

The problem of global climate change forced by anthropogenic emissions of greenhouse gases (GHG) and sulfur components (SU) has to be addressed by different methods, including the consideration of concurrent forcing mechanisms and the analysis of observations. This is due to the shortcoming and uncertainties of all methods, even in case of the most sophisticated ones. In respect to the global mean surface air temperature, we compare the results from multiple observational statistical models such as multiple regression (MRM) and neural networks (NNM) with those of energy balance (EBM) and general circulation models (GCM) where, in the latter case, we refer to the recent IPCC Report. Our statistical assessments, based on the 1866–1994 period, lead to a GHG signal of 0.8–1.3 K and a combined GHG-SU signal of 0.5–0.8 K detectable in observations. This is close to GCM simulations and clearly larger than the volcanic, solar and ENSO (El Niño/southern oscillation) signals also considered.

Keywords

Climate Change Waste Water Energy Balance Global Climate General Circulation Model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allan, R. J., Nicholls, N., Jones, P. D., Butterworth, I. J., 1991: A further extension of the Tahiti-Darwin SOI, Early ENSO and Darwin Pressure.J. Climate 4, 743–749.Google Scholar
  2. Bayer, D., Denhard, M., Meyhöfer, S., Rapp, J., Schönwiese, C.-D., 1994: Trend- und multiple Signalanalyse globaler bzw. europäischer Klimavariationen. Frankfurt/M.: Bericht Nr. 98, Inst. Meteorol. Geophys. Univ., 172 pp.Google Scholar
  3. Cubasch, U., Hasselmann, K., Höck, M., Maier-Raimer, E., Miklolajewicz, U., Santer, B. D., Sausen, R., 1992: Timedependant greenhouse warming computations with a coupled ocean-atmosphere model.Climate Dyn. 8, 55–69.Google Scholar
  4. Cubasch, U., Hegerl, G. C., Hellbach, A., Höck, H., Mikolajewicz, U., Santer, B. D., Voss, R., 1995: A climate change simulation starting from 1935.Climate Dyn. 11, 71–84.Google Scholar
  5. Denhard, M., Walter, A., Schönwiese, C.-D., 1996: Simulationen globaler Klimavänderungen mit Hilfe neuronaler Netze.Naturw. Rdsch., (in press).Google Scholar
  6. Foukal, P. V., Lean, J., 1980: An empirical model of total solar irradiance variation between 1874 and 1988.Science 247, 556–558.Google Scholar
  7. Grieser, J., Schönwiese, C.-D., 1995: Ein konzeptionelles Modell zum Studium verschiedener externer Einflüsse.Ann. Meteorol. 31, 78–79.Google Scholar
  8. Hasselmann, K., Sausen, R., Maier-Reimer, E., Voss, R., 1993: On the cold start problem in transient simulations with coupled atmosphere-ocean models.Climate Dyn. 9, 53–61.Google Scholar
  9. Hasselmann, K., Bengtsson, L., Cubasch, U., Hegerl, G. C., Rohde, H., Roeckner, E., von Storch, H., Voss, R., Waszkewitz, J., 1995: Detection of anthropogenic climate change using a fingerprint method. Hamburg: Max-Planck-Inst. f. Meteorologie, Report No. 168, 20S.Google Scholar
  10. IPCC see Houghton et al.Google Scholar
  11. Houghton, J. T., Jenkins, G. J., Ephraums, J. J., (eds.) 1990:Climate Change. The IPCC Scientific Assessment. Cambridge: University Press, 365 pp.Google Scholar
  12. Houghton, J. T., Callander, B. A., Varney, S. K., (eds.) 1992:Climate Change 1992. The Supplementary Report to the IPCC Scientific Assessment. Cambridge: Univ. Press, 200 pp.; 1996: Second Assessment Report, in print.Google Scholar
  13. Jones, P. D., 1988: Hemispheric surface temperature variations: recent trends and an update to 1987.J. Climate 1, 654–660; 1992–1995 priv. comm.Google Scholar
  14. Keeling, C. D., Bacastow, R. B., Bainbridge, A. E., Ekdall, C. A., Guenther, P. R., Waterman, L. S., Chin, J. F. S., 1976: Atmospheric carbon dioxide variations at Manu Loa Observatory, Hawaii.Tellus 28, 538–551; 1985–1992: priv. comm.Google Scholar
  15. Mitchell, J. F. B., Johns, T. C., Gregory, J. M., Tett, S. F. B., 1995: Climate response to increasing levels of greenhouse gases and sulphate aerosols.Nature 376, 501–504.Google Scholar
  16. Ropelewski, C. F., Jones, P. D., 1987: An extension of the Tahiti-Darwin Southern oscillation index.Mon. Wea. Rev. 110, 800–807.Google Scholar
  17. Rumelhart, D. E., Hinton, G. E., Williams, R. J., 1986: Learning representations by backpropagating errors.Nature 323, 533–536.Google Scholar
  18. Schönwiese, C.-D., 1986: The CO2 climate response problem. A statistical approach.Theor. Appl. Climatol. 37, 1–14.Google Scholar
  19. Schönwiese, C.-D., 1994: Analysis and prediction of global climate temperature change based on multiforced observational statistics.Environ. Poll. 83, 149–154.Google Scholar
  20. Schönwiese, C.-D., Bayer, D., 1995: Some statistical aspects of the anthropogenic and natural forced global temperature change.Atmósfera 8, 3–22.Google Scholar
  21. Schönwiese, C.-D., Ullrich, R., Beck, F., Rapp, J., 1994: Solar signals in global climatic change.Climatic Change 27, 259–281.Google Scholar
  22. Siebert, B., 1995:Statistische Analyse von vulkanisch-klimatologischen Zusammenhängen. Frankfurt/M.: Diplomarbeit, Inst. Meteorol. Geophys., 119 S.Google Scholar
  23. Simkin, T., Siebert, L., Mc Clelland, L., Bridge, D., Newhall, C., Latter, J. M., 1981:Volcanoes of the world. (Smithsonian Institution), Strondsburg (USA): Hutchinson, 233 pp.; 1984–1993: updates.Google Scholar
  24. Smith, M., 1993:Neural Networks for Statistical Modeling. New York: Van Nostrand Reinhold, 235 pp.Google Scholar
  25. Walter, A., 1996: Die Anwendungsmöglichkeiten selbstorganisierender neuronaler Netze in der Klimatologie am Beispiel globaler und hemisphärischer Temperaturzeitreihen. Frankfurt/M.: Diplomarbeit, Inst. Meteorol. Geophys., 96 S.Google Scholar
  26. Wigley, T. M. L., Schlesinger, M. E., 1985: Analytic solution for the effect of increasing CO2 on global mean temperature.Nature 315, 649–652.Google Scholar
  27. Wigley, T. M. L., Holt, T., Raper, S. C. B., 1991: Sea level and temperature change under the greenhouse effect (an interactive greenhouse model). User's Manual. Norwich, Climatic Research Unit, Univ. of East Anglia, pp.Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • C. -D. Schönwiese
    • 1
  • M. Denhard
    • 1
  • J. Grieser
    • 1
  • A. Walter
    • 1
  1. 1.Institute for Meteorology and GeophysicsUniversity of Frankfurt/M.Germany

Personalised recommendations