Hydrodynamic and thermal characteristics of systems of porous cooling in the presence of small periodic perturbations

  • A. N. Golovanov
Article

Abstract

Results of experimental investigations indicate the susceptibility of systems of porous cooling to small periodic perturbations, namely, wall vibrations and gas-coolant pressure pulsations. In this case, the filtration properties of porous materials and heat and mass transfer characteristics can change substantially.

Keywords

Filtration Mass Transfer Statistical Physic Experimental Investigation Pressure Pulsation 

Notation

P

pressure

ρ, ν

gas density and velocity

μ

coefficient of dynamic viscosity

Π

volumetric porosity

D

diameter of the permeable section

R

gas constant

T0

gas-coolant temperature

v

coefficient of kinematic viscosity

λ,cp, ρres

coefficients of specific thermal conductivity and heat capacity at constant pressure, density of porous materials

h

wall thickness

c

speed of sound

\(\tilde \rho _0 \)

pressure coefficient for the front stagnation point

rm,Sm

radius and area of the midsection

xcone

length of the cone generatrix

αcone

angle between the generatrix and the symmetry axis of the cone

S

surface area

Mw,Me

molecular weights of the injected gas and the main stream

M

Mach number

Re

Reynolds number

\(B = (\rho v)_W /(\alpha /c_p )_0 ,\bar \alpha \)

heat transfer coefficient. Subscripts

k, e

on the inner and outer sides of the porous material

0

without coolant injection

w

on the wall

a

acoustic

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. V. Polezhaev and F. B. Yurevich, Heat Shielding [in Russian], Moscow (1976).Google Scholar
  2. 2.
    S. S. Kutateladze and A. I. Leontiev, Heat and Mass Transfer and Friction in a Turbulent Boundary Layer [in Russian], Moscow (1972).Google Scholar
  3. 3.
    É. P. Volchkov, Wall Gas Screens [in Russian], Novosibirsk (1983).Google Scholar
  4. 4.
    A. M. Grishin and V. M. Fomin, Conjugate and Nonstationary Problems of the Mechanics of Reacting Media [in Russian], Novosibirsk (1984).Google Scholar
  5. 5.
    A. M. Grishin, A. N. Golovanov, and A. S. Yakimov, Zh. Prikl. Mekh. Tekh. Fiz., No. 4, 141–147 (1991).Google Scholar
  6. 6.
    A. P. Kurshin, Trudy TsAGI, Issue 1677, 3–14 (1975).Google Scholar
  7. 7.
    A. N. Golovanov, Zh. Prikl. Mekh. Tekh. Fiz., No. 2, 18–23 (1988).Google Scholar
  8. 8.
    A. N. Golovanov, Zh. Prikl. Mekh. Tekh. Fiz., No. 1, 153–158 (1989).Google Scholar
  9. 9.
    A. M. Grishin, Mathematical Modeling of Certain Aerothermochemical Phenomena [in Russian], Tomsk (1973).Google Scholar
  10. 10.
    N. F. Krasnov, Aerodynamics [in Russian], Moscow (1976).Google Scholar
  11. 11.
    Porous Permeable Materials: Reference Book (ed. by S. V. Belov) [in Russian] (1987).Google Scholar
  12. 12.
    V. A. Antonov, V. D. Gol'din, and F. M. Pakhomov, Aerodynamics of Bodies with Injection [in Russian], Tomsk (1990).Google Scholar
  13. 13.
    A. N. Lyubimov and V. V. Rusanov, Gas Flow near Blunt Bodies [in Russian], Moscow (1970).Google Scholar
  14. 14.
    R. G. Galiullin, V. B. Repin, and N. Kh. Khalitov, Viscous Fluid Flow and Heat Transfer in a Sonic Field [in Russian], Kazan' (1978).Google Scholar
  15. 15.
    H. Schlichting, Boundary Layer Theory [Russian translation], Moscow (1956).Google Scholar
  16. 16.
    N. A. Azhishchev and V. I. Bykov, Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Tekh. Nauk, Issue 6, No. 21, 27–30 (1987).Google Scholar

Copyright information

© Plenum Publishing Corporation 1995

Authors and Affiliations

  • A. N. Golovanov

There are no affiliations available

Personalised recommendations