Theoretical and Applied Climatology

, Volume 39, Issue 1, pp 1–16 | Cite as

Energy flux partitioning over the Amazon forest

  • L. D. de Abreu Sá
  • Y. Viswanadham
  • A. O. Manzi


The present study involved determination of the experimental energy receipt partitioning over the tropical Amazon forest. Diurnal variation of net radiation (Q*), sensible heat flux (QH) and latent heat flux (QE) is presented. The daytimeQE is in phase withQ* and it is always an important term in the energy balance. The daily averagedQE is 59 to 100% of the dailyQ* whereasQH is 5 to 28% at the Amazon forest site (2° 57′ S; 59° 57′ W) for the sample periods. The results present evidence thatQE over the Amazon forest is greater thanQ* in the afternoon hours. The role of sensible heat advection in maintaining largeQE over the forest surface is discussed. Hourly Bowen ratio (β) values for two campaigns of the Amazon forest micrometeorological experiment are presented. During daylight hours, the differences inβ are not significant, and exhibit a systematic pattern. The only time that the variation in Bowen ratio increased significantly was at sunrise and sunset when the thermal structure of the air was changing from a strong inversion to lapse and vice versa. The diurnalβ values changed from −3.50 to 0.85. The mean hourlyβ calculated from values from 07.00 to 16.00 h, varied from 0.05 to 0.85.


Heat Flux Advection Latent Heat Flux Forest Site Thermal Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Diese Studie beschäftigt sich mit der Aufteilung der empfangenen Energie über dem tropischen Amazonasurwald. Es wird der Tagesgang der Strahlungsbilanz (Q*), des fühlbaren (QH) und des latenten Wärmestromes (QE) vorgestellt. Während der Tagesstunden istQE in Phase mitQ* und ist immer ein wichtiger Term der Energiebilanz. Das Tagesmittel vonQE beträgt 59 bis 100%,QH 5 bis 28% des täglichenQ* an den Meßtagen bei der Amazonasurwaldstation (2° 57′ S; 59° 57′ W). Die Ergebnisse legen nahe, daß in den NachmittagsstundenQE über dem Amazonasurwald größer ist alsQ*. Die Rolle der Advektion von fühlbarer Wärme zur Aufrechterhaltung des großenQE über der Waldoberfläche wird diskutiert. Für zwei Meßkampagnen wurden die stündlichen Bowenverhältnisse (β) vorgestellt. Während der Tagesstunden ergaben sich keine signifikanten Änderungen vonβ, während bei Sonnenaufgang und -untergang, wenn der thermische Aufbau der Luft von einer starken Inversion zu neutral und umgekehrt wechselt, die Unterschiede deutlich anstiegen. Die Tageswerte vonβ lagen zwischen −3.50 und 0.85. Die Stundenmittel von 7.00 bis 16.00 Uhr schwankten zwischen 0.05 und 0.85.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, M. C., 1964: Studies of the woodland light climate. II. Seasonal variation in the seasonal light climate.J. Ecol. 52, 643–663.Google Scholar
  2. André, R. G. B., Viswanadham, Y., 1983: Radiation balance of soybeans grown in Brazil.Agric. Meteor. 30, 157–173.Google Scholar
  3. Baldocchi, D. D., Matt, D. R., Hutchinson, B. A., McMillan, R. T., 1984: Solar radiation within an oak-hickory forest: An evaluation of the extinction coefficients for several radiation components during fully-leafed and leafless periods.Argic. Forest Meteor. 32, 307–322.Google Scholar
  4. Black, T. A., McNaughton, K. G., 1971: Psychometric apparatus for Bowen-ratio determination over forests.Bound.-Layer. Meteor. 2, 246–254.Google Scholar
  5. Bowen, I. S., 1926: The ratio of heat losses by conduction and by evaporation from any water surface.Phys. Rev. 27, 779–787.Google Scholar
  6. Bradley, E. F., 1968: A micrometeorological study of velocity profiles and surface drag in the region modified by a change in surface roughness.Quart. J. R. Meteor. Soc. 94, 361–379.Google Scholar
  7. Brinkmann, W. L. F., Santos, A., 1971: Natural waters in amazonia. V. Soluble magnesium properties. Turrialba,21, 459–465.Google Scholar
  8. Calder, I. R., 1976: The measurement of water losses from a forest area using a “natural” lysimeter.J. Hydrol. 30, 311–325.Google Scholar
  9. Colwell, J. E., 1977: Vegetation canopy reflectance.Remote Sensing Environ. 3, 175–183.Google Scholar
  10. Decico, A., Santos, H. M., Ribeiro, M. N. G., Salati, E., 1977: Estudos Climatológicos da Reserva Florestal Ducke, Manaus, Am.Acta Amazonica 7, 485–494.Google Scholar
  11. Denmead, O. J., 1969: Comparative micrometeorology of a wheat field and a forest of pinus radiation.Agric. Meteor. 6, 357–371.Google Scholar
  12. Droppo, J. G., Hamilton, H. L., 1973: Experimental variability in the determination of the energy balance in a deciduous forest.J. Appl. Meteor. 12, 781–791.Google Scholar
  13. Floyed, B. W., Burley, J. W., Noble, R. D., 1978: Foliar development effects on forest floor light quality.For. Sci. 24, 445–451.Google Scholar
  14. Fritschen, L. J,. Gay, L., Holbo, R., 1973: Estimating evapotranspiration from forests by meteorological and lysimetric methods. Paper presented at the AGU Symposium on Evaporation and Transpiration from Natural Terrain, Chairman R. Lee, San Francisco, 12 December 1973.Google Scholar
  15. Fritschen, L. J., Hsia, J., Doraiswamy, P., 1977: Evapotranspiration of a douglas fir determined with a weighing lysimeter.Water Resour. Res. 13, 145–148.Google Scholar
  16. Gash, J. H. C., Stewart, J. B., 1975: The average surface resistance of a pine forest derived from Bowen ratio measurements.Bound.-Layer Meteor. 8, 453–464.Google Scholar
  17. Gay, L. W. K., Knoerr, R., Braaten, M. O., 1971: Solar radiation variability in the floor of a pine plantation.Agric. Meteor. 3, 39–50.Google Scholar
  18. Geiger, R., 1950:The Climate near the Ground. Cambridge, Mass.: Harvard University Press, 611 pp.Google Scholar
  19. Glesinger, E., 1962:Forest Influences. Rome: F.A.O., 307 pp.Google Scholar
  20. Hauschildt, P., 1984: Radiation balance studies in a mature mixed forest and at a field site at the Petawawa National Forestry Institute, Chalk River, Ontario. M.Sc. Thesis, Dept. of Geography, Queen's Univ., Kingston, Ontario. 108 pp.Google Scholar
  21. Hicks, B. B., Hyson, P., Moore, C. J., 1975: A study of eddy fluxes over a forest.J. Appl. Meteor. 14, 58–66.Google Scholar
  22. Holdridge, L. R., Grenke, W. C., Hatheway, W. H., Liang, T., Tosi, J. A., 1971:Forest Environments in Tropical Life Zones, a Pilot Study. New York: Pergamon Press, 747 pp.Google Scholar
  23. Horn, H. S., 1971:The Adaptive Geometry of Trees. Princeton: Princeton University Press, 144 pp.Google Scholar
  24. Hutchinson, B. A., 1979:Forest Meteorology. Research Needs for Energy and Resource Limited Future. Proceedings of Workshop, 28–30 August 1978, Ottawa, Canada. USDOE Technical Information Center, Oak Ridge, Tenn.Google Scholar
  25. Hutchinson, B. A., Matt, D. R., 1976: Beam enrichment of diffuse radiation in a deciduous forest.Agric. Meteor. 17, 93–110.Google Scholar
  26. Hutchinson, B. A., Matt, D. R., 1977: The distribution of solar radiation within a deciduous forest.Ecolog. Monogr. 47, 198–207.Google Scholar
  27. Hyson, P., Hicks, B. B., 1975: A single-beam infrared hygrometer for evaporation measurement.J. Appl. Meteor. 14, 301–307.Google Scholar
  28. Instituto de Pesquisas e Experimentação Agropecuária do Norte (IPEAN), 1969: Os Solos da Área Manaus — Itacoatiara.Serie Estudos e Ensaios, Belém,1, 1–177.Google Scholar
  29. Jarvis, P. G., James, G. B., Landsberg, J. J., 1976: Coniferous forests. In:Vegetation and the Atmosphere. Vol. 2, Case Studies (Monteith, J. L., ed.). London: Acad. Press, 171–240.Google Scholar
  30. Jordan, C. F., Heuveldop, J., 1981: The water budget of an Amazonian rain forest.Acta Amazonia 11, 87–92.Google Scholar
  31. Lettau, H., Lettau, K., Molion, L. C. B., 1979: Amazonia's hydrologic cycle and the role of atmospheric recycling in assessing deforestation effects.Mon. Wea. Rev. 107, 227–238.Google Scholar
  32. Lindroth, A., 1985: Canopy conductance of coniferous forests related to climate.Water Resour. Res. 21, 297–304.Google Scholar
  33. Lloyd, C. R., Shuttleworth, W. J., Gash, J. H. C., Turner, M., 1984: A microprocessor system for eddy-correlation.Agric. Forest Meteor. 33, 67–80.Google Scholar
  34. Manzi, A. O., Viswanadham, Y., Sá, L. D. A., André, R. G. B., 1984: Um Estudo sobre o Balanço de Radiação da Floresta Amazônica. Report no. INPE-3956-PRE/974, INPE, São José dos Campos, SP, Brazil (in Portuguese).Google Scholar
  35. Marques Filho, A. O., Ribeiro, M. N. G., Santos, H. M., Santos, J. M., 1981: Estudos Climatológicos da Reserva Florestal Ducke, Manaus, Am.Acta Amazonica 11, 759–768.Google Scholar
  36. McCaughey, J. H., 1978: Estimation of net radiation for a coniferous forest and the effects of logging on net radiation and the reflection coefficient.Can. J. Forest Res. 8, 450–455.Google Scholar
  37. McCaughey, J. H., 1978: Energy balance and evapotranspiration estimates for a mature coniferous forest.Can. J. Forest Res. 8, 456–462.Google Scholar
  38. McCaughey, J. H., 1980: Net radiation at Forest Montmorency, P. Q. Climatol. Bull., McGill Univ.28, 1–10.Google Scholar
  39. McCaughey, J. H., 1981: Impact of clearcutting of coniferous forest on the surface radiation balance.J. Appl. Ecol. 18, 815–826.Google Scholar
  40. McCaughey, J. H., 1985: A radiation and energy balance study of mature forest and clear-cut sites.Bound.-Layer Meteor. 32, 1–24.Google Scholar
  41. McNaughton, K. G., Black, J. A., 1973: A study of evapotranspiration from a douglas-fir forest using the energy balance approach.Water Resour. Res. 9, 1579–1590.Google Scholar
  42. McNeil, D. D., Shuttleworth, W. J., 1975: Comparative measurements of the energy fluxes over a pine forest.Bound.-Layer Meteor. 9, 297–313.Google Scholar
  43. Miller, P. C., 1969: Solar radiation profiles in opening in canopies of aspen and oak.Science 164, 308–309.Google Scholar
  44. Milne, R., 1979: Water loss and canopy resistance of a young sitka spruce plantation.Bound.-Layer Meteor. 16, 67–81.Google Scholar
  45. Moore, C. J., 1976a: A comparative study of radiation balance above forest and grassland.Quart. J. Roy. Meteor. Soc. 102, 889–899.Google Scholar
  46. Moore, C. J., 1976b: Eddy flux measurements above a pine forest.Quart. J. R. Meteor. Soc. 101, 913–918.Google Scholar
  47. Moore, C. J., 1983: On the calibration and temperature behaviour of single-beam infrared hygrometers.Bound.-Layer Meteor. 25, 245–269.Google Scholar
  48. Munn, R. E., 1966:Descriptive Micrometeorology. New York: Academic Press, 245 pp.Google Scholar
  49. Nimer, E., 1972: Climatologia da Região Norte: Introdução à Climatologia dinâmica.Revista Brasileira de Geografia,34, 124–153.Google Scholar
  50. Nnyamah, J. V., Black, T. A., 1977: Rates and patterns of water uptake in a douglas-fir forest.Soil Sci. Soc. Am. J. 41, 972–979.Google Scholar
  51. Norman, J. M., Jarvis, P. G., 1974: Photosynthesis in sitka spruce (Picea Sitchensis (Bong) (Carr.)). III. Measurements of canopy structure and interception of radiation.J. Appl. Ecol. 11, 375–398.Google Scholar
  52. Norman, J. M., Jarvis, P. G., 1975: Photosynthesis in sitka spruce. V. Radiation penetration theory and a test case.J. Appl. Ecol. 12, 839–878.Google Scholar
  53. Nunez, M., Oke, R. R., 1977: The energy balance of urban canyon.J. Appl. Meteor. 16, 11–19.Google Scholar
  54. Oke, T. R., 1979: Advectively-assisted evapotranspiration from irrigated urban vegetation.Bound.-Layer Meteor. 17, 167–173.Google Scholar
  55. Olson, J. S., Pfuderer, H. A., Chan, Y. H., 1978: Changes in the global carbon cycle and the biosphere. ORNL/EIS-109, Oak Ridge National Lab., Oak Ridge, TN, 169 pp.Google Scholar
  56. Pinker, R. J., Thompson, O. E., Eck, T. T., 1980: The albedo of a tropical evergreen forest.Quart. J. Roy. Meteor. Soc. 106, 551–558.Google Scholar
  57. Ratisbona, L. R., 1976: The climate of Brazil. In:World Survey of Climatology, Vol. 12 (edited by W. Schwerdt-feger). Amsterdam: Elsevier, 219–293.Google Scholar
  58. Rauner, J. L., 1976: Deciduous forests. In:Vegetation and the Atmosphere. Vol. II, J. L. Monteith (Editor). London: Academic Press, 241–264.Google Scholar
  59. Reifsnyder, W. E., Furnival, G. M., Horowitz, J. L., 1971: Spatial and temporal distribution of solar radiation beneath forest canopies.Agric. Meteor. 9, 31–37.Google Scholar
  60. Ribeiro, M. N. G., Adis, J., 1984: Local rainfall variability — a potential bias for bioecological studies in the central Amazon.Acta Amazonia 14, 159–174.Google Scholar
  61. Richards, P. W., 1981:The Tropical Rain Forest. Cambridge, New York: Cambridge University Press, 450 pp.Google Scholar
  62. Roberts, J., Pymar, C. F., Wallace, J. S., Pitman, R. H., 1980: Seasonal changes in leaf area, stomatal and canopy conductances and transpiration from bracken below a forest canopy.J. Appl. Ecol. 17, 409–422.Google Scholar
  63. Ross, J., 1976: Radiative transfer in plant communities. In:Vegetation and the Atmosphere. Vol. I, J. L. Monteith (Editor). London: Academic Press, 13–55.Google Scholar
  64. Ross, J., 1981:The Radiation Regime and Architecture of Plant Stands. The Hague: W. Junk (Publishers), 391 pp.Google Scholar
  65. Rutter, A. J., 1972: Evaporation from forests. In:Research Papers in Forest Meteorology. Aberystwyth: Cambrian News (Aberystwyth) Ltd., 75–90.Google Scholar
  66. Scholl, D. G., 1976: Soil moisture flux and evapotranspiration determined from soil hydraulic properties in a chaparral stand.Soil Sci. Soc. Am. J. 40, 14–18.Google Scholar
  67. Shuttleworth, W. J., McNeil, D. D., Moore, C. J., 1982: A switched continuous-wave sonic anemometer for measuring suring surface heat fluxes.Bound.-Layer Meteor. 23, 425–448.Google Scholar
  68. Shuttleworth, W. J., Gash, J. H. C., Lloyd, C. R., Moore, C. J., Roberts, J., Marques Filho, A. O., Fisch, G., Silva Filho, V. P., Ribeiro, M. N. G., Molion, L. C. B., Sá, L. D. A., Nobre, J. C. A., Cabral, O. M. R., Patel, S. R., Moraes, J. C., 1984a: Eddy correlation measurements of energy partition for Amazonian forest.Quart. J. R. Met. Soc. 110, 1143–1162.Google Scholar
  69. Shuttleworth, W. J., Gash, J. H. C., Lloyd, C. R., Moore, C. J., Roberts, J., Marques Filho, A. O., Fisch, G., Silva Filho, V. P., Ribeiro, M. N. G., Molion, L. C. B., Sá, L. D. A., Nobre, C. A., Cabral, O. M. R., Patel, S. R., Moraes, J. C., 1984b: Observations of radiation exchange above and below Amazonian forest.Quart. J. R. Meteor. Soc. 110, 1163–1169.Google Scholar
  70. Sinclair, T. R., Knoerr, K. R., 1982: Distribution of photosynthetically active radiation in the canopy of a lablolly pine plantation.J. Appl. Ecol. 19, 183–191.Google Scholar
  71. Spittlehouse, D. L., Black, T. A., 1979: Determination of forest evapotranspiration using Bowen ratio and eddy correlation measurements.J. Appl. Meteor. 18, 647–653.Google Scholar
  72. Spittlehouse, D. L., Black, T. A., 1980: Evaluation of the Bowen ratio/energy balance method for determining forest evapotranspiration.Atmosphere-Ocean 18, 98–116.Google Scholar
  73. Stewart, J. B., Thom, A. S., 1973: Energy budgets in pine forest.Quart. J. R. Meteor. Soc. 99, 154–170.Google Scholar
  74. Tajchman, S. J., 1972: The radiation and energy balance of coniferous and deciduous forests.J. Appl. Ecol. 9, 359–375.Google Scholar
  75. Tajchman, S. J., 1981: Comments on measuring turbulent exchange within and above forest canopy.Bull. Am. Meteor. Soc. 62, 1550–1559.Google Scholar
  76. Takeuchi, M., 1961: The structure of the Amazonian vegetation—II. Tropical rain forest.Jour. Fac. Sci. Tokyo Univ., Section III. Botany 8, 1–26.Google Scholar
  77. Tan, C. S., Black, T. A., 1976: Factors affecting the canopy resistance of a douglas-fir forest.Bound.-Layer Meteor. 10, 475–488.Google Scholar
  78. Tan, C. S., Black, T. A., Nnyamah, J. U., 1977: Characteristics of stomatal diffusion resistance in a douglas fir forest exposed to soil water deficits.Can. J. Forest Res. 7, 595–604.Google Scholar
  79. Tan, C. S., Black, T. A., Nnyamah, J. U., 1978: A simple diffusion model of transpiration applied to a thinned douglas-fir stand.Ecology 59, 1221–1229.Google Scholar
  80. Thom, A. S., Stewart, J. B., Oliver, H. R., Gash, J. H. C., 1975: Comparison of aerodynamic and energy budget estimates of fluxes over a pine forest.Quart. J. R. Meteor. Soc. 101, 93–105.Google Scholar
  81. Thompson, J. R., 1975: Energy budget for three small plots — substantiation of Priestley and Taylor's large-scale evaporation parameter.J. Appl. Meteor. 14, 1399–1401.Google Scholar
  82. Thompson, N., 1979: Turbulence measurements above a pine forest.Bound.-Layer Meteor. 16, 293–310.Google Scholar
  83. Thompson, D. R., Hinckley, T. M., 1977: Effect of vertical and temporal variations in stand microclimate and soil moisture on water status of several species in an oak-hickory forest.Am. Midl. Nat. 97, 373–380.Google Scholar
  84. Vila Nova, W., Salati, E., Matsui, E., 1976: Estimativa da Evapotranspiração na Bacia Amazônica.Acta Amazonica 6, 215–228.Google Scholar
  85. Viswanadham, Y., André, R. G. B., 1983: Energy balance of soybeans grown in Brazil.Arch. Met. Geoph. Biocl., Ser. B 33, 141–157.Google Scholar
  86. Warhaft, Z., 1976: Heat and moisture flux in the stratified boundary-layer.Quart. J. R. Met. Soc. 102, 703–704.Google Scholar
  87. Wenger, C. F., 1984:Forestry Handbook. New York: John Wiley and Sons, 1335 pp.Google Scholar
  88. Williams, R. J., Broesma, K., Ryswyk, A. L. van, 1978: Equilibrium and actual evapotranspiration from a very dry vegetated surface.J. Appl. Meteor. 17, 1827–1832.Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • L. D. de Abreu Sá
    • 1
  • Y. Viswanadham
    • 1
  • A. O. Manzi
    • 1
  1. 1.Instituto de Pesquisas EspaciaisMinistério de Ciência e TecnologiaSão José dos CamposBrazil

Personalised recommendations