Advertisement

Theoretical and Applied Climatology

, Volume 51, Issue 4, pp 237–250 | Cite as

Effect of climate change on regional precipitation in Lake Balaton watershed

  • J. Bartholy
  • I. Bogárdi
  • I. Matyasovszky
Article

Summary

A methodology is developed and applied to the area of Lake Balaton and its drainage basin, a region of Western Hungary, to estimate the space-time distribution of daily precipitation under climate change. Lake Balaton is the largest lake in Central and Western Europe; it has a central location in the country and its drainage basin covers about the 20% of Hungary (together with the Sió Canal). The methodology is based on an analysis of the semi-Markovian properties of atmospheric macrocirculation pattern types (MCP), and a stochastic linkage between daily (here 700 hPa) MCP types and daily precipitation events. Historical data and General Circulation Model (GCM) output of daily MCP corresponding to 1 · CO2 and 2 · CO2 scenarios are considered in this study. Time series of both local and areal precipitation corresponding for both scenarios are simulated and their statistical properties are compared. For the temperate continental climate of Western Hungary a slightly variable spatial response to climate change is obtained. Under 2 · CO2 conditions most of the local and the areal average precipitation suggests, a somewhat dryer precipitation regime in Western Hungary. The sensitivity of the results to the GCM utilized should be considered.

Keywords

Climate Change General Circulation Model Drainage Basin Precipitation Event Daily Precipitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambrózy, P., Bartholy, J., Gulyás, O., 1984: A system of seasonal macrocirculation patterns for the Atlantic-European region.Idõjárás 88, (3), 121–133.Google Scholar
  2. Bárdossy, A., Caspary, H., 1990: Detection of climate change in European Atmospheric Circulation Patterns from 1881 to 1989.Theor. Appl. Climatol. 42, 155–167.Google Scholar
  3. Bárdossy, A., Plate, E., 1992: Space-time model for daily rainfall using atmospheric circulation patterns.Water Résour. Res. 28, 1247–1260.Google Scholar
  4. Bartholy, J., 1989: Determination of seasonal macro synoptical types using cluster analysis and rotated EOF analysis.Acta Climatologica, Tomus,XXI–XXIII. (1–4), 23–33.Google Scholar
  5. Bartholy, J., Matyasovszky, I., Bogárdi, I., 1993: Sensitivity of regional climate change estimate to the classification of macrocirculation. Working paper, Dept. of Meteorology, Eötvös L. University, Budapest.Google Scholar
  6. Binark, A. M., Duckstein, L., Plate, E., 1976: Multisite rainfall generation for multisite flood simulation, AGU, Fall Annual Meeting, San Francisco, CA.Google Scholar
  7. Binark, A. M., 1979: Simultane Niederschlagsgenerierung an mehreren Stationen eines Einzugsgebietes.Mitteilungen, Heft16, pp. Institut Wasserbau III Universitat Karlsruhe, 1979.Google Scholar
  8. Bogárdi, J. J., Duckstein, L., Rumambo, O., 1988: Practical generation by synthetic rainfall event time series in a semiarid climatic zone.J. Hydrol. 103, 357–363.Google Scholar
  9. Bogárdi, I., Matyasovszky, I., Bárdossy, A., Duckstein, L., 1992: Estimation of space-time local hydrological quantities under climate change. Proceedings, 5th Intern. Meeting on Statistical Climatology, Toronto, Canada, June 22–26, 1992.Google Scholar
  10. Box, G. E. P., Jenkins, G. M., 1970:Time Series Analysis, Forcasting and Control, San Francisco: Holden Day.Google Scholar
  11. Chang, T. J., Kavvas, M. L., Delleur, J. W., 1984: Daily precipitation modeling by discrete autoregressive moving average.Water Resour. Res. 20, 565–580.Google Scholar
  12. Chua, S. H., Bras, R. L., 1982: Optimal estimators of mean areal precipitation in regions of orographic influence.J. Hydrol. 57, 23–48.Google Scholar
  13. Cubash, U., Hasselmann, K., Hock, H., Maier-Reimer, E., Mikolajewicz, U., Santer, B. D., 1991: Time-dependent greenhouse warming computations with a coupled oceanatmosphere model,Max Planck Institute for Meteorology, 67, 18 pp.Google Scholar
  14. Duckstein, L., Fogel, M., Kisiel, C. C., 1972: A stochastic model of runoff producing rainfall for summer type storms.Water Resour. Res. 8, 410–421.Google Scholar
  15. Dzerdzeevski, B. L., 1968:Circulation Mechanisms in the Atmosphere of the Northern Hemisphere in the 20th Century (In Russian). Akad. Nauk., Inst. Geogr.: Moscow.Google Scholar
  16. Essenwanger, O., 1976:Applied Statistics in Atmospheric Science. Part A. Frequencies and Curve Fitting. New York: Elsevier, p. 411.Google Scholar
  17. Faragó, T., Iványi, Zs., Szalai, S., 1990: Climate variablility and change — causes, processes, regional impacts with special emphasis on the socio-economic impacts and the tasks related to the international cooperation. Hung. Min. for Env. and Reg. Policy, Hung. Met. Serv., Budapest, 100 p. (In Hungarian)Google Scholar
  18. Hess, P., Brezowsky, H., 1969: Katalog der Grosswetterlagen Europas.Berichte des Deutschen Wetterdienst, 15/113.Google Scholar
  19. Houghton, J. T., Jenkins, G. J., Ephraums, J. J. (eds.), 1990:Climate Change, the IPCC Scientific Assessment, Intergovermental Panel on Climate Change. New York: Cambridge University Press.Google Scholar
  20. Kavvas, M. L., Delleur, J. W., 1981: A stochastic cluster model for daily rainfall sequences.Water Resour. Res. 17, 1151–1160.Google Scholar
  21. Lamb, H. H., 1972a:Climate, Present, Past and Future, vol. 1. London: Methuen, p. 613.Google Scholar
  22. Lamb, H. H., 1972b: British isles weather types.Geophys. Mem., 116.Google Scholar
  23. Lamb, H. H., 1977:Climate, Present, Past and Future, vol. 2: Climatic History and the Future. London: Methuen.Google Scholar
  24. Matyasovszky, I., Bogárdi, I., Bárdossy, A., Duckstein, L., 1992: Evaluation of historical and GCM produced atmospheric circulation patterns, Working Paper, Department of Civil Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.Google Scholar
  25. Matyasovszky, I., Bogárdi, I., Bárdossy, A., Duckstein, L., 1993: Estimation of local precipitation statistics reflecting climate change.Water Resour. Res. 29., 3955–3968.Google Scholar
  26. Namias, J., 1981: Teleconnections of 700 mb height anomalies for the Northern Hemisphere.Calcofi Atlas 29, 000–000.Google Scholar
  27. Oerlemans, J., 1975: On the occurrence of “Grosswetterlagen” in water.Meteorol. Rdsch. 28/3, 83–88.Google Scholar
  28. Palmer, T. N., 1993: A nonlinear dynamical perspective on climate change.Weather 48/10, 314–326.Google Scholar
  29. Richman, B. M., 1985: Rotation of Principal Components (Review paper). Illinois State Water Survey, Climate and Met. Sec. p. 73.Google Scholar
  30. Richman, B. M., Gong, X., 1992: An examination of methodological issues in clustering North American precipitation. Proceedings, 5th International Meeting on Statistical Climatology, Toronto, Canada, June 22–26.Google Scholar
  31. Rodriguez-Iturbe, I., Eagleson, P. S., 1987: Mathematical models of rainstorm events in space and time.Water Resour. Res. 23, 181–190.Google Scholar
  32. Small, M. J., Morgan, D. J., 1986: The relationship between a continuous-time renewal model and a discrete Markov chain model of precipitation occurrence.Water Resour. Res. 22, 1420–1430.Google Scholar
  33. Wangengejm, G. J., 1964: Catalogue of Macroscopic Processes, according to the classification of Wangengejm, 1891–1962, In: Bolotinskaya, M. S., Ryzakov, L. J. (eds.) (In Russian), Arkt. i Antarkt. Nauc. Issled. Inst.: Leningrad.Google Scholar
  34. Weidinger, T., Matyasovszky, I., Bogárdi, I., 1994: The influence of atmospheric circulation on the water budget of Lake Balaton.Meteorol. Zeitschrift 3, 288–296.Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • J. Bartholy
    • 1
  • I. Bogárdi
    • 2
  • I. Matyasovszky
    • 1
  1. 1.Department of MeteorologyEötvös Loránd UniversityBudapestHungary
  2. 2.Department of Civil EngineeringUniversity of Nebraska-LincolnLincolnUSA

Personalised recommendations