Journal of Geodesy

, Volume 70, Issue 11, pp 681–695 | Cite as

Deflection of the vertical and refraction in three-dimensional adjustment of terrestrial networks

  • N. Crocetto
  • P. Russo
Article

Summary

In this paper statistical tests are exploited in order to verify the hypotheses about the refraction and the deflection of the vertical pertaining to a geometrical model for the three-dimensional adjustment of terrestrial networks. The deflections of the vertical and the refraction coefficients can be assumed either as unknowns or fixed input data, at some or all the points of the network. The geometrical model, reported in the appendix for convenience, assumes as observables the slant distances, zenith and horizontal angles, without any reduction neither to the marks on the ground nor to the surface of reference. Further, the observation equations are derived and linearized in terms of Cartesian coordinates in Geocentric or Topocentric system; direction cosines of the vertical and of the ellipsoidal normal are adopted as the relevant direction parameters. Finally, an application to a network from Hradilek (1984), performed under different assumptions about the unknowns and the corrections of the angular observations due to the deflections of the vertical, shows the effectiveness of the proposed approach.

Keywords

Input Data Refraction Geometrical Model Direction Cosine Observation Equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbarella M, Dominici D (1989) Compensazione tridimensionale di reti di controllo: programma 3D. Ricerche di Geodesia, Topografia e Fotogrammetria, No. 5. CLUP, Milano.Google Scholar
  2. Betti B, Forlani G (1986) Globo: un programma per la compensazione tridimensionale di reti geodetiche. Atti del V Convegno Annuale del GNGTS : 835–848.Google Scholar
  3. Brovelli M, Sanso' F (1989) Equazioni di osservazione della topografia in coordinate Cartesiane locali: scrittura, linearizzazione e analisi dei relativi ambiti di validita’. Bollettino di Geodesia e Scienze Affini, Anno XLVIII, No. 3.Google Scholar
  4. Caspary WF (1987) Concepts of network and deformation analysis. Monograph 11 School of Surveying The University of New South Wales, Kensington, N.S.W., Australia.Google Scholar
  5. Crocetto N (1993) Point projection of topographic surface onto the reference ellipsoid of revolution in geocentric Cartesian coordinates. Survey Review, Vol. 32, No 250: 233–238.Google Scholar
  6. Crocetto N, Russo P (1994) Helmert's projection of a ground point onto the rotational reference ellipsoid in topocentric Cartesian coordinates. Bullettin Geodesique 69: 43–48.Google Scholar
  7. Heiskanen W, Moritz H (1967) “Physical Geodesy”; W.H. Freeman and Co., San Francisco-USAGoogle Scholar
  8. Hradilek L (1984) Three-dimensional terrestrial triangulation. Applications in surveying engineering. Konrad Wittwer Verlag-Stuttgart.Google Scholar
  9. Leick A (1990) GPS Satellite Surveying. John Wiley & Sons, New York-USAGoogle Scholar
  10. Vanicek P, Krakiwski EJ (1986) Geodesy: The Concepts. North-Holland Pub. Co., AmsterdamGoogle Scholar
  11. Vincenty T (1979) The HAVAGO three-dimensional adjustment program. NOAA Technical Memorandum NOS NGS-17.Google Scholar
  12. Vincenty T (1982) Methods of adjusting space systems data and terrestrial measurements. Bullettin Geodesique, Vol. 56, No. 3: 231–241.Google Scholar
  13. Vincenty T (1985) On the meaning of geodetic orientation. Bulletin Geodesique, Vol. 59, No.2: 189–199.Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • N. Crocetto
    • 1
  • P. Russo
    • 2
  1. 1.Facolta' di IngegneriaSecond University of NaplesAversa (Ce)Italy
  2. 2.Istituto di IngegneriaUniversity of FerraraFerraraItaly

Personalised recommendations