Skip to main content
Log in

Packing of phospholipid vesicles studied by oxygen quenching of Laurdan fluorescence

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Steady-state fluorescence oxygen quenching experiments were performed on phospholipid vesicles where 2-dimethylamino-6-lauroylnaphthalene (Laurdan) was inserted. The quenching efficiency was found to be much higher in vesicles in the liquid-crystalline phase with respect to the gel phase, by a factor of about 50. Since the oxygen solubility in the two phospholipid phases can differ at most by a factor of 4 based on literature values, we concluded that oxygen diffusion must be responsible for the great difference in the quenching efficiency. A relatively high quenching efficiency was also found in vesicles composed of equimolar gel and liquid-crystalline phospholipids. Simulations were performed using the linear superposition of the properties of the pure phases to demonstrate that, in the case of vesicles composed of coexisting phases, the diffusional properties of oxygen in each phase are largely modified by the presence of the other. The addition of 10 mol% cholesterol to the gel phase rendered Laurdan fluorescence approximately as quenchable as in the equimolar mixture of the two phases. This result points out that molecules such as cholesterol, which introduce packing defects in the bilayer, favor oxygen diffusion. From the oxygen quenching experiments and using the properties of generalized polarization, the rate of Laurdan dipolar relaxation can be estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Laudran:

2-dimethylamino-6-lauroylnapthalene

DLPC:

dilauroylphosphatidylcholine

DMPC:

dimyristoylphosphatidylcholine

DPH:

1,6-diphenyl-1,3,5-hexatriene

DPPC:

dipalmitoylphosphatidylcholine

TNS:

p-tofuidinyl-6-naphthalene sulfonic acid

PBS:

phosphate-buffered saline solution

GP:

generalized polarization

NMR:

nuclear magnetic resonance

EPR:

electron paramagnetic resonance

References

  1. J. R. Lakowicz, F. G. Prendergast, and D. Hogen (1979)Biochemistry 18: 520–527.

    PubMed  Google Scholar 

  2. E. S. Smotkin, F. T. Moy, and W. Z. Plachy, (1991)Biochem. Biophys. Acta 1061: 33–38.

    PubMed  Google Scholar 

  3. S. Fischkoff, and J. M. Vanderkooi (1975)J. Gen. Physiol. 65: 663–676.

    Article  PubMed  Google Scholar 

  4. W. K. Subczynski and J. S. Hyde (1983)Biophys. J. 41, 283–286.

    PubMed  Google Scholar 

  5. W. K. Subczynski and J. S. Hyde (1984)Biophys J. 45: 743–748.

    PubMed  Google Scholar 

  6. G. G. McDonald, J. M. Vanderkooi and J C. Oberholtzer (1979)Arch. Biochem. Biophys. 196: 281–283.

    Article  PubMed  Google Scholar 

  7. K. Strzalka, T. Walczak, T. Sarna, and H. M. Swartz (1990)Arch. Biochem. Biophys. 281: 312–318.

    Article  PubMed  Google Scholar 

  8. W. K. Subczynski, J. S. Hyde, and A. Kusumi (1991)Biochemistry 30: 8578–8590.

    PubMed  Google Scholar 

  9. M. Vauhkonen, M. Sassaroli, P. Somerharju, and J. Eisinger (1990)Biophys. J. 57: 291–300.

    PubMed  Google Scholar 

  10. T. Parasassi, G. De Stasio, A. d'Ubaldo, and E. Gratton, (1990)Biophys. J. 57: 1179–1186.

    PubMed  Google Scholar 

  11. T. Parasassi, G. De Stasio, G. Ravagnan, R. M. Rusch, and E. Gratton (1991)Biophys. J. 60: 179–189.

    PubMed  Google Scholar 

  12. J. R. Lakowicz and G. Weber (1973)Biochemistry 12: 4161–4170.

    PubMed  Google Scholar 

  13. W. R. Ware (1962)J. Phys. Chem. 66: 455–468.

    Google Scholar 

  14. M. Sassaroli, M. Vauhkonen, D. Perry, and J. Eisinger (1990)Biophys. J. 57: 281–290.

    PubMed  Google Scholar 

  15. R. C. Hresko, I. P. Sugar, Y. Barenholz and T. E. Thompson (1986)Biochemistry 25: 3813–3823.

    PubMed  Google Scholar 

  16. J. Jordan, E. Ackerman and R. L. Berger (1956)J. Am. Chem. Soc. 78: 2979–2982.

    Google Scholar 

  17. L. K. Tamm (1988)Biochemistry 27: 1450–1457.

    PubMed  Google Scholar 

  18. M. B. Schneider, W. K. Chan, and W. W. Webb (1982)Biophys. J. 43: 157–165.

    Google Scholar 

  19. T. Parasassi, G. Ravagnan, R. M. Rusch and E. Gratton (1993)Photochem Photobiol. (in press).

  20. M. B. Sankaram and T. E. Thompson (1990)Biochemistry 29: 10676–10684.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parasassi, T., Gratton, E. Packing of phospholipid vesicles studied by oxygen quenching of Laurdan fluorescence. J Fluoresc 2, 167–174 (1992). https://doi.org/10.1007/BF00866931

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00866931

Key Words

Navigation