Advertisement

Journal of Fluorescence

, Volume 2, Issue 3, pp 157–165 | Cite as

Tryptophan phosphorescence of ribonuclease T1 as a probe of protein flexibility

  • Margherita Gonnelli
  • Alessandro Puntoni
  • Giovanni Battista Strambini
Article

Abstract

The phosphorescence properties of Trp-59 of ribonuclease T1 fromAspergillus oryzae were monitored as a function of temperature, pH, salt concentration, and complex formation with substrate analogues and, also, in the presence of glycerol as viscogenic cosolvent. The results establish a rough correlation between the internal flexibility of the macromolecule, as derived from the triplet lifetime, and its stability (ΔG orT m ) toward unfolding. Below 10°C or in 70% glycerol the triplet probe distinguishes at least two gross conformations for the protein, which are characterized by a large difference in phosphorescence lifetime. It is pointed out that such structural heterogeneity does not correspond with the heterogeneity inferred from fluorescence decays and acrylamide quenching rates. Further, implications of the phosphorescence data with regard to the interpretation of acrylamide quenching of fluorescence are discussed.

Key Words

Tryptophan phosphorescence ribonuclease T1 protein flexibility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Martinez-Oyanedel, H. W. Choe, U. Heinemann, and W. Saenger (1991)J. Mol. Biol. 222, 335–352.CrossRefPubMedGoogle Scholar
  2. 2.
    U. Heineman and W. Saenger (1982)Nature 299, 27–31.CrossRefPubMedGoogle Scholar
  3. 3.
    S. Sugio, T. Amnisaki, H. Ohishi, K. I. Tomita, and W. Saenger (1985)FEBS Lett. 181, 129–132.CrossRefGoogle Scholar
  4. 4.
    S. Sugio, T. Amnisaki, H. Ohishi, K. I. Tomita, and W. Saenger (1985)FEBS Lett. 183, 115–118.CrossRefPubMedGoogle Scholar
  5. 5.
    R. Arni, U. Heineman, R. Tokuoka, and W. Saenger (1988)J. Biol. Chem. 263, 15358–15368.PubMedGoogle Scholar
  6. 6.
    S. Sugio, T. Amisaki, H. Ohishi, and K.-I. Tomita (1988)J. Biochem. 103, 354–366.PubMedGoogle Scholar
  7. 7.
    J. M. Schmidt, H. Thüring, A. Werner, H. Rüterjans, R. Quaas, and U. Hahn (1991)Eur. J. Biochem. 197, 643–653.PubMedGoogle Scholar
  8. 8.
    I. Schimada and F. Inagaki (1990)Biochemistry 29, 757–764.PubMedGoogle Scholar
  9. 9.
    H. Takeuchi, Y. Satoh, and I. Harada (1991)J. Mol. Struct. 242, 49–59.CrossRefGoogle Scholar
  10. 10.
    J. W. Longworth (1968)Photochem. Photobiol. 7, 587–594.Google Scholar
  11. 11.
    D. R. James, D. R. Demmer, R. P. Steer, and R. E. Verrall (1985)Biochemistry 24, 5517–5526.PubMedGoogle Scholar
  12. 12.
    L. X.-Q. Chen, J. W. Longworth, and G. R. Fleming (1987)Biophys. J. 51, 865–873.PubMedGoogle Scholar
  13. 13.
    M. R. Eftink and A. C. Ghiron (1987)Biophys. J. 52, 467–473.PubMedGoogle Scholar
  14. 14.
    A. D. MacKerell, Jr., R. Rigler, L. Nilsson, U. Hahn, and W. Saenger (1987)Biophys. Chem. 26, 247–261.PubMedGoogle Scholar
  15. 15.
    I. Gryczynski, M. Eftink, and J. R. Lakowicz (1988)Biochim. Biophys. Acta 954, 244–252.PubMedGoogle Scholar
  16. 16.
    A. Grinvald and I. Z. Steinberg (1976)Biochim. Biophys. Acta 427, 663–678.Google Scholar
  17. 17.
    B. Somogyi, J. A. Norman, M. Punyiczki, and A. Rosemberg (1992)Biochim. Biophys. Acta 1119, 81–89.PubMedGoogle Scholar
  18. 18.
    A. D. MacKerell, Jr., L. Nilsson, and R. Rigler (1988)Biochemistry 27, 4547–4556.PubMedGoogle Scholar
  19. 19.
    P. H. Axelsen, C. Haydock, and F. Prendergast (1988)Biophys. J. 54, 249–258.PubMedGoogle Scholar
  20. 20.
    P. H. Axelsen and F. Prendergast (1989)Biophys. J. 56, 43–66.PubMedGoogle Scholar
  21. 21.
    M. R. Eftink and C. A. Ghiron (1975)Proc. Natl. Acad. Sci. USA 72, 3290–3294.PubMedGoogle Scholar
  22. 22.
    M. R. Eftink (1983)Biophys. J. 43, 323–334.PubMedGoogle Scholar
  23. 23.
    J. R. Lakowicz, B. P. Maliwal, H. Cherek, and A. Balter (1983)Biochemistry 22, 1741–1752.PubMedGoogle Scholar
  24. 24.
    G. B. Strambini (1987)Biophys. J. 52, 23–28.PubMedGoogle Scholar
  25. 25.
    D. B. Calhoun, J. M. Vanderkool, and S. W. Englander (1983)Biochemistry 22, 1533–1539.PubMedGoogle Scholar
  26. 26.
    G. B. Strambini and M. Gonnelli (1985)Chem. Phys. Lett. 115, 196–201.Google Scholar
  27. 27.
    G. B. Strambini and M. Gonnelli (1986)Biochemistry 25, 2471–2476.Google Scholar
  28. 28.
    P. Cioni and G. B. Strambini (1989)J. Mol. Biol. 207, 237–247.PubMedGoogle Scholar
  29. 29.
    G. B. Strambini (1989)J. Mol. Liquids 42, 155–165.Google Scholar
  30. 30.
    G. B. Strambini and E. Gabellieri (1989)Biochemistry 28, 160–166.PubMedGoogle Scholar
  31. 31.
    B. A. Shirley and D. V. Laurents (1990)J. Biochem. Biophys. Methods 20, 181–188.PubMedGoogle Scholar
  32. 32.
    G. B. Strambini and M. Gonnelli (1990)Biochemistry 29, 196–203.PubMedGoogle Scholar
  33. 33.
    G. B. Strambini (1983)Biophys. J. 43, 127–130.PubMedGoogle Scholar
  34. 34.
    K. Imakubo and Y. Kai (1977)J. Phys. Soc. Jap. 42, 1431–1433.Google Scholar
  35. 35.
    J. M. Vanderkooi, D. B. Calhoun, and S. W. Englander (1987)Science 236, 568–569.PubMedGoogle Scholar
  36. 36.
    G. B. Strambini and E. Gabellieri (1990)Photochem. Photobiol. 51, 643–648.PubMedGoogle Scholar
  37. 37.
    C. N. Pace (1990)TIBS 15, 14–17.PubMedGoogle Scholar
  38. 38.
    T. Kiefhaber, F. X. Schmid, M. Renner, H. J. Hinz, U. Hahn, and R. Quaas (1990)Biochemistry 29, 8250–8257.PubMedGoogle Scholar
  39. 39.
    C. N. Pace, U. Heinemann, U. Hahn, and W. Saenger (1991)Angew. Chem. Int. Ed. Engl. 30, 343–454.Google Scholar
  40. 40.
    A. D. Mackerell, Jr., R. Rigler, U. Hahn, and W. Saenger (1991)Biochim. Biophys. Acta 1037, 357–365.Google Scholar
  41. 41.
    D. Kostewa, H. W. Choe, U. Heinemann, and W. Saenger (1989)Biochemistry 28, 7592–7600.PubMedGoogle Scholar
  42. 42.
    H. Frauenfelder, S. G. Sligar, and P. G. Wolyners (1991)Science 254, 1598–1602.PubMedGoogle Scholar
  43. 43.
    K. Gekko and S. N. Timasheff (1981)Biochemistry 20, 4667–4676.PubMedGoogle Scholar
  44. 44.
    M. W. Hershberger, A. H. Maki, and W. C. Galley (1980)Biochemistry 19, 2204–2209.PubMedGoogle Scholar
  45. 45.
    D. Creed (1984)Photochem. Photobiol. 39, 537–562.Google Scholar
  46. 46.
    J. M. Beechem and L. Brand (1985)Annu. Rev. Biochem. 54, 43–71.PubMedGoogle Scholar
  47. 47.
    J. W. Longworth (1971) in R. F. Steiner and I. Weinryb (Eds.),Excited States of Protein and Nucleic Acids, Plenum, New York, pp. 319–484.Google Scholar
  48. 48.
    Z. Li, W. Lee, and W. C. Galley (1989)Biophys. J. 56, 361–367.PubMedGoogle Scholar
  49. 49.
    M. Punyiczki and A. Rosenberg (1992)Biophys. Chem. 42, 93–100.PubMedGoogle Scholar
  50. 50.
    M. R. Eftink and K. A. Hagaman (1986)Biophys. Chem. 25, 277–282.PubMedGoogle Scholar
  51. 51.
    D. V. Bent and E. Hayon (1975)J. Am. Chem. Soc. 97, 2612–2619.PubMedGoogle Scholar
  52. 52.
    R. Santus, M. Bazin, and M. Aubailly (1980)Rev. Chem. intermed. 3, 231–283.Google Scholar
  53. 53.
    R. M. Eftink (1991) in J. R. Lakowicz (Ed.),Topics in Fluorescence Spectroscopy, Vol. 2. Principles, Plenum Press, New York, pp. 53–123.Google Scholar
  54. 54.
    E. Blatt, A. Husain, and W. H. Sawyer (1986)Biochim. Biophys. Acta 871, 6–13.PubMedGoogle Scholar
  55. 55.
    M. R. Eftink and C. A. Ghiron (1987)Biochim. Biophys. Acta 916, 343–349.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • Margherita Gonnelli
    • 1
  • Alessandro Puntoni
    • 1
  • Giovanni Battista Strambini
    • 1
  1. 1.Istituto di BiofisicaCNRPisaItaly

Personalised recommendations