Skip to main content

Advertisement

Log in

Role of platelets in progressive glomerular diseases

  • Invited Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

There is increasing evidence that platelets are involved in the pathogenesis of glomerulonephritis. Intraglomerular platelets or their degradation products are observed in biopsies from patients with lupus nephritis, mesangioproliferative, membranous or IgA nephropathy. Moreover shortened platelet survival in patients with various glomerular diseases has also been described. In models of experimental glomerulonephritis, platelets may participate in glomerular injury, together with other mediators, by complex mechanisms. As extensively documented, platelets release within the glomerulus vasoactive, chemotactic and mitogenic substances that interact with a number of soluble mediators generated by renal resident or inflammatory cells and contribute to amplify glomerular injury. Thus platelet-activating factor and other platelet secretory products, polycationic macromolecules, platelet factor 4 and β-thromboglobulin, alter glomerular permeability to proteins and enhance immune-mediated glomerular injury. Platelet-derived factors, like platelet-derived growth factor (PDGF) and transforming growth factor β (TGFβ) mediate renal disease progression in experimental and human glomerulonephritis via their chemotactic activity for infiltrating leucocytes and their effect of promoting extracellular matrix synthesis by resident renal cells. In these settings increased renal expression of PDGF and TGFβ has correlated with clinical features. Specific PDGF and TGFβ inhibitors ameliorated experimental glomerular disease. A wide variety of therapies to inhibit platelet function have been employed over the years, however the results of clinical studies are controversial and do not allow conclusions to be drawn about the efficacy of anti-platelet agents in progressive renal disease. Identification of specific platelet inhibitors or interventions specific for platelet secretory products and their target cells will be crucial for understanding the exact role of platelets and their products in glomerular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ardlie NG (1972) Mechanism of platelet aggregation and release. their possible role in vascular injury. In: Kincaid-Smith P, Mathew TH, Becker EL (eds) Glomerulonephritis. Morphology, natural history, and treatment. Wiley, New York, p 891

    Google Scholar 

  2. Cochrane CG (1971) Mechanisms involved in the deposition of immune complexes in tissues. J Exp Med 134: 75–89

    Google Scholar 

  3. Clark WF, Friesen M, Linton AL, Lindsay RM (1976) The platelets as mediator of tissue damage in immune-complex glomerulonephritis. Clin Nephrol 6: 287–289

    Google Scholar 

  4. Parbtani A, Cameron JS (1980) Platelet involvement in glomerulonephritis. In: Remuzzi G, Mecca G de Gaetano G (eds) Hemostasis, prostaglandins and renal disease. Raven, New York, p 45

    Google Scholar 

  5. Duffy JL, Cinque T, Grishman E, Churg J (1970) Intraglomerular fibrin, platelet aggregation and subendothelial deposits in lipoid nephrosis. J Clin Invest 49: 251–258

    Google Scholar 

  6. Kincaid-Smith P (1972) Coagulation and renal disease. Kidney Int 2: 183–189

    Google Scholar 

  7. Nakajima M, Hewitson TD, Mathews DC, Kincaid-Smith P (1991) Platelet-derived growth factor mesangial deposits in mesangial IgA glomerulonephritis. Nephrol Dial Transplant 6: 11–16

    Google Scholar 

  8. Mustard JF, Packham MA (1975) The role of blood and platelets in atherosclerosis and the complications of atherosclerosis. Thromb Diath Haemorrh 33: 444–456

    Google Scholar 

  9. Vermylen J, Carreras LO (1982) The process of hemostasis. In: Herman AG, Vanhoutte PM, Denolin H, Goossens A (eds) Cardiovascular pharmacology of the prostaglandins. Raven, New York, p 79

    Google Scholar 

  10. Wu X, Pippin J, Lefkowith JB (1993) Platelets and neutrophils are critical to the enhanced glomerular arachidonate metabolism in acute nephrotoxic nephritis in rats. J Clin Invest 91: 766–773

    Google Scholar 

  11. Wu X, Helfrich MH, Horton MA, Feigen LP, Lefkowith JB (1994) Fibrinogen mediates platelet-polymorphonuclear leukocyte cooperation during immune-complex glomerulonephritis in rats. J Clin Invest 94: 928–936

    Google Scholar 

  12. Israels ED, Nisli G, Paraskevas F, Israaels LG (1973) Platelet Fe receptors as a mechanism for Ag-Ab complex induced platelet injury. Thromb Diath Haemorrh 29: 434–444

    Google Scholar 

  13. Schlondorff D, Newirth P (1986) Platelet activating factor and the kidney. Am J Physiol 251: F1-F11

    Google Scholar 

  14. Moncada S, Vane JR (1979) Pharmacology and endogenous roles of prostaglandin endoperoxides, thromboxane A2, and prostacyclin. Pharmacol Rev 30: 293–331

    Google Scholar 

  15. Roth GJ (1992) Platelets and blood vessels: the adhesion event. Immunol Today 13: 100–105

    Google Scholar 

  16. Ware JA, Heistad DD (1993) Platelet-endothelium interactions. N Engl J Med 328: 628–635

    Google Scholar 

  17. Camussi G (1986) Potential role of platelet-activating factor in renal pathophysiology. Kidney Int 29: 469–477

    Google Scholar 

  18. Braquet P, Touqui L, Shen TY, Vargaftig BB (1987) Perspectives in platelet-activating factor research. Pharmacol Rev 39: 97–145

    Google Scholar 

  19. Camussi G, Tetta C, Deregitus C, Bussolino F, Segoloni G, Vercellone A (1982) Platelet-activating factor (PAF) in experimentally-induced rabbit acute serum sickness: role of basopbil-derived PAF in immune complex deposition. J Immunol 128: 86–94

    Google Scholar 

  20. Yoshimura A, Ideura T, Sato M, Kitaoka T, Koshikawa S (1987) The effect of platelet activating factor (PAF) on BSA nephritis of rabbits (abstract). 10th International Congress on Nephrology, London, 26–31 July, The Alden Press, Oxford, p 369

    Google Scholar 

  21. Lianos EA, Zanglis A (1990) Glomerular platelet-activating factor levels and origin in experimental glomerulonephritis. Kidney Int 37: 736–740

    Google Scholar 

  22. Bertani T, Livio M, Macconi D, Morigi M, Bisogno G, Patrono C, Remuzzi G (1987) Platelet activating factor (PAF) as a mediator of injury in nephrotoxic nephritis. Kidney Ont 31: 1248–1256

    Google Scholar 

  23. Camussi G, Tetta C, Coda R, Segoloni GP, Vercellone A (1984) Platelet-activating factor-induced loss of glomerular anionic charges. Kidney Int 25: 73–81

    Google Scholar 

  24. Perico N, Delaini F, Tagliaferri M, Abbate M, Cucchi M, Bertani T, Remuzzi G (1988) Effect of platelet-activating factor and its specific receptor antagonist on glomerular permeability to proteins in isolated perfused rat kidney. Lab Invest 58: 163–171

    Google Scholar 

  25. Perico N, Remuzzi A, Dadan J, Battaglia C, Remuzzi G (1991) Platelet-activaring factor alters glomerular barrier size selectivity for macromolecules in rats. Am J Physiol 261: F85-F90

    Google Scholar 

  26. Yoo J, Schlondorff D, Neugarten J (1990) Protective effects of specific platelet-activating factor receptor antagonists in experimental glomerulonephritis. J Pharmacol Exp Ther 256: 841–844

    Google Scholar 

  27. Stahl RAK, Thaiss F, Oberle G, Brecht HM, Schoeppe W, Wenzel U, Helmchen UM (1991) The platelet activating factor receptor antagonist WEB 2170 improves glomerular hemodynamics and morphology in a proliferative model of mesangial cell injury. J Am Soc Nephrol 2: 37–44

    Google Scholar 

  28. Baldi E, Emancipator SN, Hassan MO, Dunn MJ (1990) Platelet activating factor receptor blockade ameliorates murine systemic lupus crythematosus. Kidney Int 38: 1030–1038

    Google Scholar 

  29. Morigi M, Macconi D, Riccardi E, Boccardo P, Zilio P, Bertani T, Remuzzi G (1991) Platelet-activating factor receptor blocking reduces proteinura and improves survival in lupus autoimmune mice. J Pharmacol Exp Ther 258: 601–606

    Google Scholar 

  30. Macconi D, Noris M, Benfenati E, Quaglia R, Pagliarino G, Remuzzi G (1991) Increased urinary excretion of platelet activating factor in mice with lupus nephritis. Life Sci 48: 1429–1427

    Google Scholar 

  31. Barnes JL, Levine SP, Venkatachalam MA (1984) Binding of platelet factor four (PF4) to glomerular polyanion. Kidney Int 25: 759–765

    Google Scholar 

  32. Tetta C, Coda R, Camussi G (1985) Human platelet cationic proteins bind to rat glomeruli, induce loss of anionic charges and increase glomerular permeability. Agents Actions 16: 24–26

    Google Scholar 

  33. Barnes JL, Camussi G, Tetta C, Venkatachalam MA (1990) Glomerular localization of platelet cationic proteins after immune complex-induced platelet activation. Lab Invest 63: 755–761

    Google Scholar 

  34. Barnes JL (1993) Platelets in renal disease. In: Tetta C (ed) Immunopharmacology of the renal system. Academic Press, London, p 87

    Google Scholar 

  35. Abboud HE (1993) Growth factors in glomerulonephritis. Kidney Int 43: 252–267

    Google Scholar 

  36. Ross R (1989) Platelet-derived growth factor. Lancet I: 1179–1182

    Google Scholar 

  37. Johnson R, Iida H, Yoshimura A, Floege J, bowen-Pope DF (1992) Platelet-derived growth factor: a potentially important cytokine in glomerular disease. Kidney Int 41:590–594

    Google Scholar 

  38. Johnson RJ (1991) Platelets in inflammatory glomerular injury. Semin Nephrol 11: 276–284

    Google Scholar 

  39. Shultz PJ, DiCorleto PE, Silver BJ, Abboud HE (1988) Mesangial cell express PDGF mRNAs and proliferate in response to PDGF. Am J Physiol 255: F674-F684

    Google Scholar 

  40. Silver BJ, Jaffer FE, Abboud HE (1989) Platelet-derived growth factor (PDGF) synthesis in mesangial cells: induction by multiple peptide mitogens. Proc Natl Acad Sci US 86: 1056–1060

    Google Scholar 

  41. DiCorleto PE, Bowen-Pope DF (1983) Cultured endothelial cells produce a platelet-derived growth factor-like protein. Proc Natl Acad Sci USA 80: 1919–1923

    Google Scholar 

  42. Daniel TO, Gibbs VC, Milfay DF, Williams LT (1987) Agents that increase cAMP accumulation block endothelial c-sis induction by thrombin and transforming growth factor-β. J Biol Chem 262: 11893–11896

    Google Scholar 

  43. Lovett DH, Ryan J, Sterzel RB (1983) Stimulation of rat mesangial cell proliferation by macrophage interleukin 1. J Immunol 131: 2830–2836

    Google Scholar 

  44. Doi T, Striker LJ, Elliot SJ, Conti FG, Striker GE (1989) Insulinlike growth factor-1 is a progression factor for human mesangial cells. Am J Pathol 134: 395–404

    Google Scholar 

  45. Abboud HE (1992) Platelet-derived growth factor and mesangial cells. Kidney Int 41: 581–583

    Google Scholar 

  46. Barnes JL, Hevey KA (1990) Glomerular mesangial cell migration in response to platelet-derived growth factor. Lab Invest 62: 379–382

    Google Scholar 

  47. Barnes JL, Hevey KA (1991) Glomerular mesangial cell migration. Response to platelet secretory products. Am J Pathol 138: 859–866

    Google Scholar 

  48. Taraboletti G, Morigi M, Figliuzzi M, Giavazzi R, Zoja C, Remuzzi G (1992) Thrombospondin induces glomerular mesangial cell adhesion and migration. Lab Invest 67: 566–571

    Google Scholar 

  49. Iida H, Seifert R, Alpers CE, Gronwald RGK, Phillips PE, Pritzl P, Gordon K, Gow AM, Ross R, Bowen-Pope DF, Johnson RJ (1991) Platelet-derived growth factor (PDGF) and PDGF receptor are induced in mesangial proliferative nephritis in the rat. Proc Natl Acad Sci USA 88: 6560–6564

    Google Scholar 

  50. Johnson RJ, Raines E, Floege J, Yoshimura A, Pritzl P, Alpers CE, Ross R (1992) Inhibition of mesangial cell proliferation and matrix expression in glomerulonephritis in the rat by antibody to platelet-derived growth factor. J Exp Med 175: 1413–1416

    Google Scholar 

  51. Johnson RJ, Garcia RL, Pritzl P, Alpers CE (1990) Platelets mediate glomerular cell proliferation in immune complex nephritis induced by anti-mesangial cell antibodies in the rat. Am J Pathol 136: 369–374

    Google Scholar 

  52. Gesualdo L, Pinzani M, Floriano JJ, Hassan MO, Nagy NU, Schena FP, Emancipator SN, Abboud HE (1991) Platelet-derived growth factor expression in mesangial proliferative glomerulonep-phritis. Lab Invest 65: 160–167

    Google Scholar 

  53. Floege J, Burns MW, Alpers CE, Yoshimura A, Pritzl P, Gordon K, Seifert RA, Bowen-Pope DF, Couser EG, Johnson RJ (1992) Glomerular cell proliferation and PDGF expression precede glomerulosclerosis in the remnant kidney model. Kidney Int 41: 297–309

    Google Scholar 

  54. Barnes JL, Abboud HE (1993) Temporal expression of autocrine growth factors corresponds to morphological features of mesangial proliferation in habu snake venom-induced glomerulonephritis. Am J Pathol 143: 1366–1376

    Google Scholar 

  55. Roberts AB, Sporn MB, (1990) The transforming growth factors-β. In: Sporn MB, Roberts AB (eds) Handbook of experimental pharmacology, peptide growth factors and their receptors, vol 95/I). Springer, Berlin Heidelberg New York, p 419

    Google Scholar 

  56. Wakefield LM, Smith DM, Broz S, Jackson M, Levinson AD, Sporn MB (1989) Recombinant TGF-β1 is synthesized as a two component latent complex that shares some structural features with the native platelet latent TGF-β1 complex Growth Factors 1: 203–218

    Google Scholar 

  57. Kanzaki T, Olofsson A, Moren A, Wernstedt C, Hellman U, Miyazono K, Claesson-Welsh L, Heldin C-H (1990) TGF-β1 binding protein: a component of the large latent complex of TGF-β1 with multiple repeat sequences. Cell 61: 1051–1061

    Google Scholar 

  58. Border WA, Ruoslahti E (1992) Transforming growth factor-β in disease: the dark side of tissue repair. J Clin Invest 90: 1–7

    Google Scholar 

  59. Wahl SM (1994) Transforming growth factor β: the good, the bad, and the ugly. J Exp Med 180: 1587–1590

    Google Scholar 

  60. Border WA, Noble NA (1994) Transforming growth factor β in tissue fibrosis. N Engl J Med 331: 1286–1292

    Google Scholar 

  61. Massague J (1990) The transforming growth factor-β family. Annu Rev Cell Biol 6: 597–641

    Google Scholar 

  62. MacKay K, Kondaiah P, Danielpour D, Austin HA III, Brown PD (1990) Expression of transforming growth factor-β1 and β2 in rat glomeruli. Kidney Int 38: 1095–1100

    Google Scholar 

  63. Kaname S, Uchida S, Ogata E, Kurokawa K (1992) Autocrine secretion of transforming growth factor-β in cultured rat mesanglal cells. Kidney Int 42: 1319–1327

    Google Scholar 

  64. Jaffer F, Saunders C, Shultz P, Throckmorton D, Weinshell E, Abboud HE (1989) Regulation of mesangial cell growth by polypeptide mitogens. Am J Pathol 135: 261–269

    Google Scholar 

  65. MacKay K, Striker LJ, Stauffer JW, Doi T, Agodoa LY, Striker GE (1989) Transforming growth factor-β: murine glomerular receptors and responses of isolated glomerular cells. J Clin Invest 83: 1160–1167

    Google Scholar 

  66. Border WA, Okuda S, Languino LR, Ruoslahti E (1990) Transforming growth factor-β regulates production of proteoglycans by mesangial cells. Kidney Int 37: 689–695

    Google Scholar 

  67. Nakamura T, Miller D, Ruoslahti E, Border WA (1992) Production of extracellular matrix by glomerular epithelial cells is regulated by transforming growth factor-β1. Kidney Int 41: 1213–1221

    Google Scholar 

  68. Okuda S, Languino LR, Ruoslahti E, Border WA (1990) Elevated expression of transforming growth factor-β and proteoglycan production in experimental glomerulonephritis. Possible role in expansion of the mesangial extracellular matrix. J Clin Invest 86: 453–462

    Google Scholar 

  69. Border WA, Okuda S, Lauguino L, Sporn MB, Ruoslahti E (1990) Suppression of experimental glomerulonephritis by antiserum against transforming growth factor β1. Nature 346: 371–374

    Google Scholar 

  70. Border WA, Noble NA, Yamamoto T, Harper J, Yamaguchi Y, Pierschbacher MD, Ruoslahti E (1992) Natural inhibitor of transforming growth factor-β protects against scarring in expenmental kidney disease. Nature 360: 361–364

    Google Scholar 

  71. Yamamoto T, Nakamura T, Noble NA, Ruoslahti E, Border WA (1993) Expression of transforming growth factor β is elevated in human and experimental diabetic nephropathy. Proc Natl Acad Sci USA 90: 1814–1818

    Google Scholar 

  72. Tamaki K, Okuda S, Audo T, Iwamoto T, Nakayama M, Fujishima M (1994) TGF-β1 in glomerulosclerosis and interstitial fibrosis of Adriamycin nephropathy. Kidney Int 45: 525–536

    Google Scholar 

  73. Isaka Y, Fujiwara Y, Ueda N, Kaneda Y, Kamada T, Imai E (1993) Glomerulosclerosis induced by in vivo transfection of transforming growth factor-β or platelet-derived growth factor gene into the rat kidney. J Clin Invest 92: 2597–2601

    Google Scholar 

  74. Kincaid-Smith P (1972) The treatment of chronic mesangiocapillary (membranoproliferative) glomerulonephritis with impaired renal function. Med J Aust 2: 587–592

    Google Scholar 

  75. Tiller DJ, Clarkson AR, Mathew T (1981) A prospective randomized trial in the use of cyclophosphamide, dipyridamole and warfarin in membranous and mesangio capillary glomerulonephritis. In: Zurukzoglu W, Papadimitriou M, Sion M (eds) Eighth International Congress of Nephrology: advances in basis and clinical nephrology. Karger, Basel, p 345

    Google Scholar 

  76. Cattran D, Charron R, Cardella C (1981) Controlled trial in mesangio-capillary glomerulonephritis (MCGN) (abstract). In: Zurukzoglu W, Papadimitriou M, Sion M (eds) Eighth International Congress of Nephrology: advances in basic and clinical nephrology. Karger, Basel, p 287

    Google Scholar 

  77. Zimmerman SW, Moorthy AV, Dreher WH, Friedman A, Varanasi U (1983) Prospective trial of warfarin and dipyridamole in patients with membranoproliferative glomerulonephritis. Am J Med 75: 920–927

    Google Scholar 

  78. Donadio JV Jr, Anderson CF, Mitchell JC, Holley KE, Ilstrupd M, Fuster V, Chesebro JH (1984) Membranoproliferative glomerulonephritis. A prospective clinical trial of platelet-inhibitor therapy. N Engl J Med 310: 1421–1426

    Google Scholar 

  79. Levenson DJ, Simmons LE, Brenner BM (1982) Arachidonic acid metabolism, prostaglandins and the kidney. Am J Med 72: 354–374

    Google Scholar 

  80. Ciabattoni G, Cinotti GA, Pierucci A, Simonetti BM, Manzi M, Pugliese F, Barsotti P, Pecci G, Taggi F, Patrono C (1984) Effect of sulindac and ibuprofen in patienst with chronic glomerular disease. Evidence for the dependence of renal function on prostacyclin. N Engl J Med 310: 279–283

    Google Scholar 

  81. Grekas D, Alivanis P, Kalekou H, Syrganis C, Tourkantonis A (1987) Are antiplatelet agents of value in the treatment of chronic glomerular disease? Nephrol Transplant 2: 377–379

    Google Scholar 

  82. Bruno JJ (1983) The mechanisms of action of ticlopidine. Thromb Res [Suppl] 4: 59–67

    Google Scholar 

  83. Iovine C, D'Avenia V, Turco S, Mattioli PL, Di Minno G (1984) Ex vivo effects of ticlopidine on human platelets: inhibition of fibrinogen binding by a mechanism independent of thromboxane formation. Agents Actions [Suppl] 15: 105

    Google Scholar 

  84. Izumino K, Iida H, Asaka M, Mizumura Y, Sasayama S (1986) Effect of the antiplatelet agents ticlopidine and dipyridamole on experimental immune complex glomerulonephritis in rats. Nephron 43: 56–61

    Google Scholar 

  85. Izumino K, Iida H, Asaka M, Sasayama S (1987) Effect of the antiplatelet agents ticlopidine and dipyridamole on nephrotoxic serum nephritis in rats. Nephron 45: 306–310

    Google Scholar 

  86. Zoja C, Perico N, Bergamelli A, Pasini M, Morigi M, Dadan J, Belloni A, Bertani T, Remuzzi G (1990) Ticlopidine prevents renal disease progression in rats with reduced renal mass. Kidney Int 37: 934–942

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zoja, C., Remuzzi, G. Role of platelets in progressive glomerular diseases. Pediatr Nephrol 9, 495–502 (1995). https://doi.org/10.1007/BF00866739

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00866739

Key words

Navigation