Polymer Mechanics

, Volume 14, Issue 3, pp 377–384 | Cite as

Fracture of materials having a heterogeneous structure

  • P. V. Tikhomirov
  • S. P. Yushanov
Strength Of Materials


Heterogeneous Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. P. Tamuzh, P. V. Tikhomirov, and S. P. Yushanov, “The fracture mechanism of materials having a heterogeneous structure,” in: Proceedings of the Fourth International Conferenc on Fracture, Vol. 3, Waterloo, Canada (1977), pp. 233–240.Google Scholar
  2. 2.
    Yu. Ya. Gotlib, A. V. Dobrodumov, A. M. El'yashevich, and Yu. E. Svetlov, “Cooperative fracture kinetics of rigid polymers. Nuclear mechanism,” Fiz. Tverd. Tela,15, No. 3, 801–809 (1973).Google Scholar
  3. 3.
    V. A. Petrov and A. N. Orlov, “Contribution of thermal fluctuations to the scattering and the gauge effect of longevity,” Intern. J. Fract.,11, No. 5, 881–886 (1975).Google Scholar
  4. 4.
    V. A. Petrov and A. N. Orlov, “Statistical kinetics of thermally activated fracture,” Intern. J. Fract.,12, No. 2, 231–238 (1976).Google Scholar
  5. 5.
    V. A. Petrov, “Thermally activated fracture phenomena,” Fiz. Tverd. Tela,18, No. 5, 1290–1298 (1976).Google Scholar
  6. 6.
    I. A. Birger, “Application of the theory of random processes to the description of fracture,” in: Strength of Materials and Structures [in Russian], Kiev (1975), pp. 297–314.Google Scholar
  7. 7.
    Tateishi Tetsuya, “On structural instability due to damage accumulation,” Bull. Mech. Eng. Lab., No. 19, 1–13 (1975).Google Scholar
  8. 8.
    P. P. Oldyrev and V. P. Tamuzh, “Variation of the properties of a glass laminate in cyclic tension-compression,” Mekh. Polim., No. 5, 864–872 (1967).Google Scholar
  9. 9.
    S. N. Zhurkov, V. S. Kuksenko, and A. I. Slutsker, “Micromechanics of polymer fracture,” Probl. Prochn., No. 2, 45–40 (1971).Google Scholar
  10. 10.
    S. N. Zhurkov and V. E. Korsukov, “Atomic mechanisms of polymer fracture under load,” Fiz. Tverd. Tela,15, No. 7, 2071–2080 (1973).Google Scholar
  11. 11.
    M. Ya. Tutans and Yu. S. Irzhumtsev, “Seismoacoustic prediction of the fracture processes in glass-reinforced plastics,” Mekh. Polim., No. 3, 421–429 (1971).Google Scholar
  12. 12.
    I. N. Bogachev, A. A. Vainshtein, and S. D. Volkov, Introduction to Statistical Metallography [in Russian], Moscow (1972).Google Scholar
  13. 13.
    W. A. Weibull, Fatigue Testing and Analysis of Results, Pergamon (1961).Google Scholar
  14. 14.
    V. P. Tamuzh and P. V. Tikhomirov, “Calculation of time to rupture with allowance for the statistical distribution of bond stresses,” Mekh. Polim., No. 3, 227–231 (1973).Google Scholar
  15. 15.
    S. Glasstone, K. Laidler, and H. Eyring, Theory of Rate Processes, McGraw-Hill, New York (1941).Google Scholar
  16. 16.
    A. I. Lur'e, Theory of Elasticity [in Russian], Moscow (1970).Google Scholar
  17. 17.
    S. N. Zhurkov and S. A. Abasov, “Role of chemical and intermolecular bonds in polymer fracture,” Vysokomol. Soedin.,3, No. 3, 450–455 (1961).Google Scholar
  18. 18.
    M. A. Gezalov, V. S. Kuksenko, and A. I. Slutsker, “Fibriller structure and submicroscopic cracks in oriented crystalline polymers,” Fiz. Tverd. Tela,12, No. 1, 100–108 (1970).Google Scholar
  19. 19.
    V. R. Regel', A. I. Slutsker, and É. E. Tomashevskii, The Kinetic Nature of the Strength of Solids [in Russian], Moscow (1974).Google Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • P. V. Tikhomirov
  • S. P. Yushanov

There are no affiliations available

Personalised recommendations