Journal of engineering physics

, Volume 38, Issue 4, pp 444–463 | Cite as

Prediction of the properties of liquids and gases

  • L. P. Filippov
Review Articles


Statistical Physic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    K. Croxton, The Physics of the Liquid State [Russian translation], Mir, Moscow (1978).Google Scholar
  2. 2.
    B. C. Freasier and R. Y. Bearman, “Virial expansion for hard ellipsoids of revolution,” Mol. Phys.,32, 551–554 (1976).Google Scholar
  3. 3.
    M. Rigby, “Virial expansion for hard nonspherical molecules,” J. Chem. Phys.,53, 1021–1023 (1970).Google Scholar
  4. 4.
    I. Nezbeda, “Virial expansion and an improved equation of state for the hard convex molecule system,” Chem. Phys. Lett.,41, 55–58 (1976).Google Scholar
  5. 5.
    T. Boublik, I. Nezbeda, and O. Tranka, “Monte-Carlo study of hard spherocylinders,” Czech. J. Phys.,26, 1081–1097 (1976).Google Scholar
  6. 6.
    I. Nezbeda and T. Boublik, “Monte-Carlo study of hard spherocylinders. II,” Czech. J. Phys.,28, 353–356 (1978).Google Scholar
  7. 7.
    D. W. Rebertus and K. M. Sando, “Molecular dynamics simulation of a fluid of hard spherocylinders,” J. Chem. Phys.,67, 2585–2590 (1977).Google Scholar
  8. 8.
    P. A. Monson and M. Rigby, “Virial equation of state for hard spherocylinders,” Mol. Phys.,35, 1337–1342 (1978).Google Scholar
  9. 9.
    P. A. Monson and M. Rigby, “Hard spherocylinder fluids. A Monte Carlo study,” Chem. Phys. Lett.,58, 122–126 (1978).Google Scholar
  10. 10.
    I. Nezbeda and T. Boublik, “Hard oblate spherocylinders: Monte-Carlo virial coefficients,” T. Czech. J. Phys.,27, 953–956 (1977).Google Scholar
  11. 11.
    B. C. Freasier, “Isotopic hard core dumbbell fluid: equation of state,” Chem. Phys. Lett.,35, 280–282 (1975).Google Scholar
  12. 12.
    Y. Ausloos, “Modified Carnahan-Starling equation of state for fused hard spheres,” J. Chem. Phys.,64, 3490–3491 (1976).Google Scholar
  13. 13.
    B. C. Freasier, D. Jolly, and R. J. Bearman, “Hard dumbbells: Monte Carlo pressures and virial coefficients,” Mol. Phys.,31, 255–263 (1976).Google Scholar
  14. 14.
    T. Boublik and I. Nezbeda, “Equation of state for hard dumbbells,” Chem. Phys. Lett.,46, 315–316 (1977).Google Scholar
  15. 15.
    I. Aviram and D. J. Tildesley, “Monte Carlo study of mixtures of hard diatomic molecules,” Mol. Phys.,35, 365–384 (1978).Google Scholar
  16. 16.
    D. Chandler and C. S. Han, “Comparisons of Monte Carlo and RISM calculations of pair correlation functions,” J. Chem. Phys.,66, 5231–5234 (1977).Google Scholar
  17. 17.
    I. Aviram and D. J. Tildesley, “The virial pressure in a fluid of hard polyatomic molecules,” Mol. Phys.,34, 881–885 (1977).Google Scholar
  18. 18.
    I. Nezbeda and T. Boublik, “Hard heteronuclear dumbbell fluids,” Czech. J. Phys.,27, 1071–1077 (1977).Google Scholar
  19. 19.
    B. W. Streett and D. J. Tildesley, “Computer simulations of polyatomic molecules. III,” J. Chem. Phys.,68, 1275–1284 (1978).Google Scholar
  20. 20.
    T. B. McRury and W. A. Steele, “Statistical mechanics of nonspherical molecules. VIII. Hard-core models,” J. Chem. Phys.,66, 2262–2271 (1977).Google Scholar
  21. 21.
    T. Boublik, “Hard convex body equation of state,” J. Chem. Phys.,63, 4084 (1975).Google Scholar
  22. 22.
    T. Boublik, “Statistical thermodynamics of convex molecule fluids,” Mol. Phys.,27, 1415–1427 (1974).Google Scholar
  23. 23.
    O. Kiyohara and G. C. Benson, “Sound velocity in hard convex particle fluids and their mixtures,” Acustica,37, 208–210 (1977).Google Scholar
  24. 24.
    T. Boublik, “Perturbation theory for fluid of rodlike molecules interacting via the Kihara potential,” Mol. Phys.,32, 1737–1749 (1976).Google Scholar
  25. 25.
    S. Sung, “Perturbation theory for repulsive forces in classical fluids: selected applications,” J. Chem. Phys.,56, 4989–4994 (1972).Google Scholar
  26. 26.
    J. J. Van Laar, Zustandsgieichung von Gasen end Flüssigkeiten, Verl. L. Voss. Leipzig (1924).Google Scholar
  27. 27.
    A. I. Kitaigorodskii, Molecular Crystals [in Russian], Nauka, Moscow (1971).Google Scholar
  28. 28.
    V. G. Dashevskii, Conformation of Organic Molecules [in Russian], Khimiya, Moscow (1974).Google Scholar
  29. 29.
    N. N. Avgul', A. V. Kiselev, and D. P. Poshkus, Adsorption of Gases and Vapors on Homogeneous Surfaces [in Russian], Khimiya, Moscow (1975).Google Scholar
  30. 30.
    M. D. McKinley and T. M. Reed, “Intermolecular potential-energy functions for pairs of simple polyatomic molecules,” J. Chem. Phys.,42, 3891–3899 (1965).Google Scholar
  31. 31.
    J. R. Sweet and W. A. Steel, “Statistical mechanics of linear molecules. I. Potential energy functions,” J. Chem. Phys.,47, 3022–3029 (1967).Google Scholar
  32. 32.
    M. Lal and D. Spencer, “Monte Carlo computer simulation of chain molecules. IV. Interactions between N-alkane molecules,” J. Chem. Soc. Faraday Trans.,11, 1502–1509 (1973).Google Scholar
  33. 33.
    J. Barojas, D. Levesque, and B. Quentrec, “Simulation of diatomic homonuclear liquids,” Phys. Rev. A,7, 1092–1105 (1973).Google Scholar
  34. 34.
    P. S. Y. Cheung and J. G. Powless, “The properties of liquid nitrogen. IV,” Mol. Phys.,30, 921–949 (1975).Google Scholar
  35. 35.
    P. S. Y. Cheung and J. G. Powless, “The properties of liquid nitrogen. V,” Mol. Phys.,32, 1383–1405 (1976).Google Scholar
  36. 36.
    D. J. Evans and R. O. Watts, “On the structure of liquid benzene,” Mol. Phys.32, 93–100 (1976).Google Scholar
  37. 37.
    E. Johnson, “A theory for site-site pair distribution functions of molecular fluids,” J. Chem. Phys.,67, 3194–3207 (1977).Google Scholar
  38. 38.
    W. B. Streett and D. J. Tildesley, “Computer simulation of polyatomic molecules. II,” Proc. R. Soc. London,A55, 239–265 (1977).Google Scholar
  39. 39.
    G. H. Wegdam, G. J. Evans, and M. Evans, “The properties of some derivative autocorrelation functions computed with atom-atom potential,” Mol. Phys.,34, 103–112 (1977).Google Scholar
  40. 40.
    D. J. Evans, “Transport properties of homonuclear diatomics. I,” Mol. Phys.,34, 103–112 (1977).Google Scholar
  41. 41.
    K. Singer, A. Taylor, and J. V. L. Singer, “Thermodynamic and structural properties of liquids modelled by ‘2-Lennard-Jones’ pair potentials,” Mol. Phys.,33, 1757–1795 (1977).Google Scholar
  42. 42.
    D. R. Douslin, R. T. Moore, and G. Waddington, “Equation and thermodynamic properties of perfluorocyclobutane,” J. Phys. Chem.,63, 1959–1964 (1959).Google Scholar
  43. 43.
    J. K. Connoly and G. A. Kandalic, “Virial coefficients and intermolecular forces of hydrocarbons,” Phys. Fluids,3, 463–470 (1960).Google Scholar
  44. 44.
    A. Ruiz Paniaga, J. A. Burriel, L. E. Nerrero Garcia, “Segundo coefficient del virial fuerzas intermoleculares en vapores organicos.” Anales de Chimica,71, 349–353 (1975).Google Scholar
  45. 45.
    K. Yamazaki and T. Kihara, “Core potential of intermolecular forces applied to third virial coefficients and transport coefficients of polyatomic gases,” J. Statist. Phys.,14, 509–515 (1976).Google Scholar
  46. 46.
    R. Reijnhart, “New approximations to the virial equation of state for fluids,” Physica,83A, 533–547 (1976).Google Scholar
  47. 47.
    S. D. Hamman and J. A. Lambert, “The behaviour of fluids of quasispherical molecules,” Austral. J. Chem.,7, 1–17 (1954).Google Scholar
  48. 48.
    J. A. Lambert, “The potential between pairs of quasispherical molecules,” Austral. J. Chem.,12, 109–113 (1959).Google Scholar
  49. 49.
    A. G. De Rocco and W. G. Hoover, “Second virial coefficient for the spherical-shell potential,” J. Chem. Phys.,36, 916–926 (1962).Google Scholar
  50. 50.
    A. G. De Rocco, T. H. Spurling, and T. S. Storvick, “Intermolecular forces in globular molecules. II,” J. Chem. Phys.,46, 599–602 (1967).Google Scholar
  51. 51.
    T. H. Spurling and A. G. De Rocco, “Intermolecular forces in globular molecules. III,” Phys. Fluids,10, 231–235 (1967).Google Scholar
  52. 52.
    T. S. Storvick, T. H. Spurling, and A. G. De Rocco, “Intermolecular forces in globular molecules. IV,” J. Chem. Phys.,46, 1499–1503 (1967).Google Scholar
  53. 53.
    A. G. De Rocco, T. S. Storvick, and T. H. Spurling, “Intermolecular forces in globular molecules. V, VI,” J. Chem. Phys.,48, 997–1008 (1968).Google Scholar
  54. 54.
    M. P. Vukalovich and I. I. Novikov, Technical Thermodynamics [in Russian], Gosenergoizdat, Moscow (1952).Google Scholar
  55. 55.
    L. P. Filippov, Similarity of the Properties of Substances [in Russian], Moscow State Univ. (1978).Google Scholar
  56. 56.
    L. P. Filippov, “Methods of calculating and predicting the properties of liquids and gases on the basis of the theory of thermodynamic similarity,” in: Reviews of Thermophysical Properties of Substances, IVT Akad. Nauk SSSR, No. 2 (1977).Google Scholar
  57. 57.
    K. S. Pitzer, D. Z. Lippman, R. F. Curl, C. M. Huggins, and D. E. Petersen, “The volumetric and thermodynamic properties of fluids. I,” J. Am. Chem. Soc.,77, 3433–3440 (1955).Google Scholar
  58. 58.
    K. S. Pitzer, “The volumetric and thermodynamic properties of fluids. II,” J. Am. Chem. Soc.,77, 3427–3432 (1955).Google Scholar
  59. 59.
    L. Riedel, “Untersuchungen über eine Erweiterung des Theorems der übereinstimmenden Zustande. I,” Chemie-Ing.-Techn.,26, 83–89 (1954).Google Scholar
  60. 60.
    R. Read and T. Sherwood, Properties of Gases and Liquids [Russian translation], Khimiya, Leningrad (1971).Google Scholar
  61. 61.
    F. Danon and K. S. Pitzer, “Volumetric and thermodynamic properties of fluids., VI,” J. Chem. Phys.,36, 425–430 (1962).Google Scholar
  62. 62.
    N. B. Vargaftik, Tables on the Thermophysical Properties of Liquids and Gases, Halsted Press (1975).Google Scholar
  63. 63.
    M. V. Vol'kenshtein, Structure and Physical Properties of Molecules [in Russian], Izd. Akad. Nauk SSSR, Moscow-Leningrad (1955).Google Scholar
  64. 64.
    V. F. Tomanovskaya and B. E. Kolotova, Freons [in Russian], Khimiya, Moscow-Leningrad (1970).Google Scholar
  65. 65.
    J. Kijima, K. Saikawa, and K. Watanabe,”Experimental study of thermodynamic properties of hexafluoroethane (R-116),” in: Proc. 7th Symp. Thermophys. Prop. Gaithersburg, Md., New York (1977), pp. 480–488.Google Scholar
  66. 66.
    J. O. Hirschfelder, Ed. “Intermolecular forces,” Adv. Chem. Phys.,12 (1967).Google Scholar
  67. 67.
    V. I. Poltev, “Semiempirical selection of the parameters of atom-atom potential functions for the calculations of the energy of intermolecular interactions of paired heterocyclic compounds,” Kristallografiya,22, 453–458 (1977).Google Scholar
  68. 68.
    J. H. Dymond, “Corresponding states: a universal reduced potential energy function for spherical molecules,” J. Chem. Phys.,54, 3675–3681 (1971).Google Scholar
  69. 69.
    L. Riedel, “Die Flüssigkeitsdichte im Sattigungszustand,” Chemie-Ing.-Techn.,26, 259–264 (1954).Google Scholar
  70. 70.
    V. M. Tatevskii (editor), Physicochemical Properties of Individual Hydrocarbons [in Russian], Gostoptekhizdat, Moscow (1960).Google Scholar
  71. 71.
    L. P. Filippov, “Saturated vapor pressure,” Vestn. Mosk. Gos. Univ., No. 2, 95–98 (1956).Google Scholar
  72. 72.
    Landolt-Börnstein, Physikalische Tabellen. 5. Aufl., Springer-Verlag, Berlin-Göttingen-Heidelberg (1927).Google Scholar
  73. 73.
    L. P. Filippov, “Correlation between the critical volume of substances and the molecular structure,” Zh. Struk. Khim.,19, 358–360 (1978).Google Scholar
  74. 74.
    L. Riedel, “Eine neue additive Grosse zur Abschätzung unbekannter kritischer Daten von nicht assoziierenden organischen Stoffen,” Chemie-Ing.-Techn.,28, 419–423 (1956).Google Scholar
  75. 75.
    D. Cook and J. S. Rowlinson, “Deviations from principle of corresponding states,” Proc. R. Soc.,219, 405–417 (1953).Google Scholar
  76. 76.
    J. S. Rowlinson, “The equilibrium properties of assemblies of nonspherical molecules,” Trans. Faraday Soc.,50, 647–656 (1954).Google Scholar
  77. 77.
    J. S. Rowlinson, “The reduced equation of state,” Trans. Faraday Soc.,51, 1317–1326 (1955).Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • L. P. Filippov

There are no affiliations available

Personalised recommendations