Theoretical and Applied Climatology

, Volume 53, Issue 1–3, pp 123–133 | Cite as

Soil moisture variation and plant water stress at the Hartheim Scots pine plantation

  • N. Sturm
  • S. Reber
  • A. Kessler
  • J. D. Tenhunen
Article

Summary

During two measurement campaigns in 1992 (the Hartheim Experiment HartX- and an additional experiment in autumn), measurements of soil moisture were carried out in aPinus sylvestris stand at Hartheim on the Oberrhein. Several methods were used to determine soil water status. They were compared in terms of suitability for estimating stand evapotranspiration (ET) via soil water depletion. Measurements of tree water potential suggested that conductance of the trees was affected by soil water depletion during the period of the HartX campaign in spring 1992. We interpret the observations to indicate a lesser influence of soil water availability on tree transpiration during the autumn experiment.

Eddy correlation and xylem sapflow measurements provided reference ET values with which to compare the stand ET calculations based on soil moisture measurements. Profile measurements of soil moisture showed that particularly in springtime when the lower soil layers are saturated with water, the water transport from depths below the major rooting zone is a very important factor affecting evaluation of stand ET. Decreases in soil water storage may be determined best with permanently installed soil moisture sensors such as used in tensiometric or TDR measurements that provide high resolution of changes over time.

Keywords

Soil Moisture Soil Water Soil Water Availability Soil Water Storage Soil Water Status 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Davies, W. J., Zhang, J., 1991: Root signals and the regulation of growth and development of plants in drying soil.Ann. Rev. Plant Physiol. and Plant Mol. Biol. 42, 55–76.Google Scholar
  2. Ellenberg, H., 1978:Vegetation Mitteleuropas mit den Alpen. Stuttgart: Verlag Eugen Ulmer, 981 pp.Google Scholar
  3. Garthe, H. J., 1985:Über das langjährige Verhalten der Energiehaushaltskomponenten eines mitteleuropäischen Kiefernwaldes. Diss. Geowiss. Fak., Univ. Freiburg i. Br.Google Scholar
  4. Hädrich, F., Stahr, K., 1992: Die Böden in der Umgebung von Freiburg i. Br..Freiburger Geographische Hefte 36, 129–195.Google Scholar
  5. Heimovaara, T. J., Bouten, W., Verstraten, J. M., 1994: Frequency domain analysis of time domain reflectometry waveforms 2. A four-component dielectric mixing model for soils.Water Resour. Res. 30, (2), 201–209.Google Scholar
  6. Jansson, P.-E., Halldin, S., 1979: Model for annual water and energy flow in a layered soil. In: Halldin, S. (ed.)Comparison of Forest Water and Energy Exchange Models. Copenhagen: Int Soc Ecol Model, pp. 145–163.Google Scholar
  7. Kelliher, F. M., Leuning, R., Schulze, E. D., 1993: Evaporation and canopy characteristics of coniferous forest and grassland.Oecologia 95, 153–163.Google Scholar
  8. Kessler, A., Müller, R., Jaeger, L., 1988: Der Wasserhaushalt eines Kiefernwaldes und Wechselwirkungen mit dem Energiehaushalt.Erdkunde, Arch. f. wiss. Geogr. 42, 177–188.Google Scholar
  9. Merkel, H., 1987: Der Jahresring der Kiefer als klimatologische Datenquelle.Ber Deutscher Wetterd., 172, 48 pp.Google Scholar
  10. Persson, H., 1980: Fine-root dynamics in a Scots Pine stand with and without near-optimum nutrient and water regimes.Acta Phytogeogr. Suec. 68, 101–110.Google Scholar
  11. Roth, K., Schulin, R., Fluehler, H., Attinger, W., 1990: Calibration of time domain reflectometry for water content measurement using a composite dielectric approach.Water Resour. Res. 26 (10), 2267–2273.Google Scholar
  12. Rowntree, P. R., 1991: Atmospheric parameterization schemes for evaporation over land: Basic concepts and climate modeling aspects. In: Schmugge, T. J., Andre. J. (eds.)Land Surface Evaporation: Measurement and Parameterization. Berlin, Heidelberg, New York: Springer, pp. 5–29.Google Scholar
  13. Running, S. W., 1984: Documentation and preliminary validation of H2OTRANS and DAYTRANS: Two models for predicting transpiration and water stress in western coniferous forests. USDA Forest Service, Fort Collins, Colorado, 24 pp.Google Scholar
  14. Schäfer, G., 1977: Nährelementhaushalt von Kiefernjungbeständen in der südlichen Oberrheinebene. Freiburger Bodenkundliche Abh., 7, 153 pp.Google Scholar
  15. Shuttleworth, W. J., 1989: Micrometeorology of temperate and tropical forest.Phil. Trans. Roy. Soc. Lond, Ser B 324, 299–344.Google Scholar
  16. Sturm, N., 1993: Untersuchung zum Wasserhaushalt der Bodendeckschicht eines Kiefernwaldes bei Hartheim am Oberrhein. Diplomarbeit am Lehrstuhl für Hydrologie, Freiburg i. Br., 87 pp.Google Scholar
  17. Tenhunen, J. D., Hanano, R., Abril, M. A. I., Weiler, E. W., Hartung, W., 1994: Above- and belowground controls on leaf conductance ofCeanothus thyrsiflorus growing in a chaparral environment: drought response and the role of abscisic acid.Oecologia 99, 306–314.Google Scholar
  18. Topp, G. C., Davies, J. L., Annan, A. P., 1980: Electromagnetic determination of soil water content: Measurements in coaxial transmission lines.Water Resour. Res. 16 (3), 574–582.Google Scholar
  19. Trüby, P., 1983: Elementumsatz in einer bewässerten Pararendzina der südlichen Oberrheinebene unter besonderer Berücksichtigung der Schwermetalle. Freiburger Bodenkundliche Abh., 12, 262 pp.Google Scholar
  20. Wartinger, A., 1991: Der Einfluß von Bodenaustrocknungszyklen auf Blattleitfähigkeit, CO2 Assimilation, Wachstum und Wasserentzug von prunus dulcis (Miller) D. A. Webb. PhD-Thesis, Bayreuth, 92 pp.Google Scholar
  21. Whitehead, D., Jarvis, P. G., Waring, R. H., 1984: Stomatal conductance, transpiration, and resistance to water uptake in a Pinus sylvestris spacing experiment.Can. J. For. Res. 14, 692–700.Google Scholar
  22. Wicke, W., 1988: Studien zu einem Verdunstungsmodell für einen Wald. Diplomarbeit Albert-Ludwigs-Universität, Freiburg, 55 pp.Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • N. Sturm
    • 1
    • 3
  • S. Reber
    • 2
  • A. Kessler
    • 1
  • J. D. Tenhunen
    • 3
  1. 1.MIF, Meteorologisches InstitutUniversität FreiburgGermany
  2. 2.MCRLab, Geographisches InstitutUniversität BaselSwitzerland
  3. 3.Bayreuther Institut für Terrestrische Ökosystemforschung (BITÖK)Universität BayreuthGermany

Personalised recommendations