Theoretical and Applied Climatology

, Volume 53, Issue 1–3, pp 23–31 | Cite as

The available energy over a Scots Pine plantation: What's up for partitioning?

  • R. Vogt
  • Ch. Bernhofer
  • L. W. Gay
  • L. Jaeger
  • E. Parlow


Errors influencing the calculation of the available energy above a forest are discussed. The main emphasis is put on the investigation of the problems affecting the measurement of net radiation. This is done by utilizing the data set of a surface energy balance experiment which was conducted in and above a Scots Pine plantation from May 11 to 22, 1992. During that Hartheimer Experiment (HartX) there were redundant measurements of net radiation using five different radiometers of three different designs. The initially fair agreement between the net radiometer readings was considerably improved by introducing different responsivities for the shortand longwave range. The mean deviations to the relative net radiation after correction vary between — 1.4 and 1.2 Wm−2 with standard deviations between ± 5.4 and 6.6 Wm−2. The total error referring to the available energy is estimated to be up to ± 36 Wm−2 (± 6%) around midday decreasing to 10 Wm−2 during nighttime.


Radiation Standard Deviation Climate Change Waste Water Water Management 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Däke, C. U., 1972: Über ein neues Modell des Strahlungsbilanzmessers nach Schulze.Ber. Dtsch. Wetterdienstes. 16, 22.Google Scholar
  2. Dehne, K., Bergholter, U., Kasten, F., 1993: IEA comparison of longwave radiometers. Deutscher Wetterdienst, Meteorologisches Observatorium Hamburg, Report No. IEA-SHCP-9F-3.Google Scholar
  3. Deluisi, J., Dehne, K., Vogt, R., Konzelmann, T., Ohmura, A., 1992: First results of the Baseline Surface Radiation Network (BSRN) broadband infared radiometer intercomparison at FIRE II. In: Keevallik, S., Kärner, O. (eds.)IRS '92: Current Problems in Radiation: Proceedings of the International Radiation Symposium, Tallinn, Estonia, 3–8 August 1992.Google Scholar
  4. Field, R. T., Fritschen, L. J., Kanemasu, E. T., Smith, E. A., Stewart, J. B., Verma, S. B., Kustas, W. P., 1992: Calibration, comparison, and correction of net radiation instruments used during FIFE.J. Geophys. Res. 97, D17, 18681–18695.Google Scholar
  5. Fritschen, L. J., 1963: Construction and evaluation of a minature net radiometer.J. Appl. Meteor. 2, 165–172.Google Scholar
  6. Garthe, H.-J., 1985: Über das langjährige Verhalten der Energiehaushaltskomponenten eines mitteleuropäischen Kiefernwaldes. Dissertation. Freiburg: Geowiss. Fa K. Univ. Freiburg 107 pp.Google Scholar
  7. Gay, L. W., Bernhofer, C., Blanford, J., Vogt, R., 1996: Flux agreement above a Scots Pine plantation.Theor. Appl. Climatol.,53, 33–48.Google Scholar
  8. Halldin, S., Lindroth, A., 1992: Errors in net radiometry: comparison and evaluation of six radiometer designs.J. Atmos. Oceanic Technol. 9, 762–783.Google Scholar
  9. Jaeger, L., Kessler, A., 1996: The HartX period May 1992, seen against the background of twenty years of energy balance climatology at the Hartheim Pine forest.Theor. Appl. Climatol.,53, 9–21.Google Scholar
  10. Künstle, E., Mitscherlich, G., Hädrich, F., 1979: Gaswechseluntersuchungen in Kiefernbeständen im Trockengebiet der Oberrheinebene.Allgem. Forst- und Jagdztg. 150, 205–228.Google Scholar
  11. Lee, X., Black, T. A., 1993: Atmospheric turbulence within and above a Douglas-Fir stand. Part II: eddy fluxes of sensible heat and water vapour.Bound.-Layer Meteor. 64, 369–389.Google Scholar
  12. Ohmura, A., Schroff, K., 1983: Physical characteristics of the Davos-type pyrradiometer for short- and long-wave radiation.Arch. Met. Geophys. Biocl., Ser. B 33, 57–76.Google Scholar
  13. Philipona, R., Fröhlich, C., Betz, Ch., 1995: Characterization of pyrgeometers and the accuracy of atmospheric longwave radiation measurements.Appl. Opt. 34, 1598–1605.Google Scholar
  14. Schäfer, G., 1977: Nährelementehaushalt von Kiefernjungbeständen in der südlichen Oberrheinebene.Freiburger bodenkundliche Abhandlungen, Heft 7.Google Scholar
  15. Schmid, H. P., Oke, T. R., 1990: A model to estimate the source area contributing to turbulent exchange in the surface layer over patchy terrain.Quart. J. Roy Meteor. Soc. 116, 965–988.Google Scholar
  16. Thom, A. S., 1975: Momentum, mass and heat exchange of plant communities. In: Monteith, J. L. (ed.)Vegetation and the Atmosphere, Vol. 1 London: Academic Press.Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • R. Vogt
    • 1
  • Ch. Bernhofer
    • 2
  • L. W. Gay
    • 3
  • L. Jaeger
    • 4
  • E. Parlow
    • 1
  1. 1.Meteorology Climatology Remote Sensing Lab, Department of GeographyUniversity of BaselSwitzerland
  2. 2.Institute of Meteorology and PhysicsUniversität für BodenkulturViennaAustria
  3. 3.School of Renewable Natural ResourcesUniversity of ArizonaTucsonUSA
  4. 4.Meteorologisches InstitutUniversität FreiburgGermany

Personalised recommendations