Journal of Fluorescence

, Volume 2, Issue 1, pp 7–21 | Cite as

Diffusion-influenced fluorescence quenching dynamics in one to three dimensions

  • Bo Medhage
  • Mats Almgren
Article

Abstract

The fluorescence decay curves obtained from diffusion-influenced quenching in various spatial dimensions are discussed. The two-dimensional quenching has, because of intractable fitting functions, previously been dealt with only in the completely diffusion-controlled case (corresponding to the Smoluchowski boundary condition). In this paper, an approximation for the two-dimensional (2D)-quenching behavior with the Collins-Kimball boundary condition is presented. The nonlinear least-squares method has been used to analyze simulated decay data. The consequences the choice of an incorrect model has on the final results as well as the possibility to discriminate between different dimensionalities are investigated. Also, some inherent properties of the fitting functions are studied.

Key Words

Fluorescence quenching diffusion dimensionality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Smoluchowski (1917)Z. Phys. Chem. 92, 129.Google Scholar
  2. 2.
    A. Szabo (1989)J. Phys. Chem. 93, 6929.Google Scholar
  3. 3.
    F. C. Collins and G. E. Kimball (1949)J. Colloid Sci. 4, 425.Google Scholar
  4. 4.
    M. Almgren, J. Alsins, E. Mukhtar, and J. van Stam (1988)J. Phys. Chem. 92, 4479.Google Scholar
  5. 5.
    M. Almgren and J. Alsins (1991)Israel J. Chem. 31, 159.Google Scholar
  6. 6.
    C. S. Owen (1975)J. Phys. Chem. 62, 3204.Google Scholar
  7. 7.
    F. Caruso, F. Grieser, P. Thistlewaite, R. Urquhart, M. Almgren, and E. Wistus (1991)J. Am. Chem. Soc. 113, 4838.Google Scholar
  8. 8.
    J. M. Vanderkooi, S. Fischkoff, M. Andrich, F. Podo, and C. S. Owen (1975)J. Chem. Phys. 63, 3661.Google Scholar
  9. 9.
    K. Kano, H. Kawazumi, T. Ogawa, and J. Sunamoto (1981)J. Phys. Chem. 85, 2204.Google Scholar
  10. 10.
    D. D. Miller and D. F. Evans (1989)J. Phys. Chem. 93, 323.Google Scholar
  11. 11.
    M. Almgren and J. Alsins (1990)Progr. Colloid Polym. Sci. 81, 9.Google Scholar
  12. 12.
    H. S. Carslaw and J. C. Jaeger (1959)Conduction of Heat in Solids, 2nd ed., Oxford University Press, New York.Google Scholar
  13. 13.
    K. R. Naqvi (1974)Chem. Phys. Lett. 28, 280.Google Scholar
  14. 14.
    R. Das and N. Periasamy (1989)Chem. Phys. 136, 361.Google Scholar
  15. 15.
    P. R. Bevington (1969)Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill, New York.Google Scholar
  16. 16.
    J. R. Knutson, J. M. Beecham, and L. Brand (1983)Chem. Phys. Lett. 102, 501.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • Bo Medhage
    • 1
  • Mats Almgren
    • 1
  1. 1.Department of Physical ChemistryUppsala UniversityUppsalaSweden

Personalised recommendations