Skip to main content
Log in

Statistical specification of local surface weather elements from large-scale information

  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Summary

A procedure for stochastic simulation of the spatial structure of daily mesoscale temperature and precipitation values is presented. Specific values are generated on the basis of, and consistent with, observational data representing averages over areas corresponding to Atmospheric General Circulation Model grid elements. The procedure is based on a rotated principal component representation of the correlation structure of the observed local data, and procedures synthetic data which statistically resemble the corresponding observations. Use of a stochastic, rather than a deterministic, specification procedure may not be required if generation of only temperature data are of interest.

Zusammenfassung

Es wird eine Methode für die stochastische Simulation der räumlichen Struktur von täglichen mesoskaligen Temperatur-und Niederschlagswerten vorgestellt. Auf der Basis von und konsistent mit Beobachtungsdaten werden spezifische Werte erzeugt. Diese Werte repräsentieren Mittelwerte über Flächen, die den GCM Gitterelementen entsprechen. Die Methode basiert auf der Darstellung der Korrelationsstruktur der lokalen Beobachtungsdaten durch rotierte Hauptkomponenten und produziert synthetische Daten mit statischen Eigenschaften, die denen der Beobachtungen ähnlich sind. Die Verwendung einer stochastischen statt deterministischen Spezifikationsmethode ist wahrscheinlich nicht notwending, wenn das Interesse nur der Erzeugung von Temperaturdaten gilt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baier, W., 1977: Crop-Weather Models and Their Use in Yield Assessments. Tech. Note No. 151, WMO-No. 458. Geneva: WMO, 48 pp.

    Google Scholar 

  • Box, G. E. P., Jenkins, G. M., 1976:Time Series Analysis: Forecasting and Control. San Francisco: Holden-Day, 575 pp.

    Google Scholar 

  • Brower, B., 1984: Development of a U.S. historical climatology network.The State Climatologist 8, 9–23.

    Google Scholar 

  • Changnon, S. A., Jr., 1981: Convective raincells.J. Atmos. Sci. 38, 1793–1797.

    Google Scholar 

  • Dugas, W. A., Arkin, G. F., Jackson, B. S., 1983: Factors affecting simulated crop yield spatial extrapolation.Trans. Amer. Soc. Agric. Eng. 26, 1440–1444.

    Google Scholar 

  • Galliani, G, Filippini, F, 1985: Climatic clusters in a small area.J. Climatol. 5, 487–501.

    Google Scholar 

  • Gates, W. L., 1985: The use of general circulation models in the analysis of the ecosystem impacts of climatic change.Climatic Change 7, 267–284.

    Google Scholar 

  • Griffith, C. G., Augustine, J. A., Woodley, W. L., 1981: Satellite rain estimation in the U.S. high plains.J. Appl. Meteor. 20, 53–66.

    Google Scholar 

  • Harmann, H. H., 1967:Modern Factor Analysis. Chicago: University of Chicago Press, 474 pp.

    Google Scholar 

  • Hartley, H. O., 1949: Tests of significance in harmonic analysis.Biometrika 36, 194–201.

    Google Scholar 

  • Hendrick, R. L., Comer, G. H., 1970: Space variation of precipitation and implications for raingage network design.J. Hydrol. 10, 151–163.

    Google Scholar 

  • Horel, J. D., 1981: A rotated principal component analysis of the interannual variability of the Northern Hemisphere 500 mb height field.Mon. Wea. Rev. 109, 2080–2092.

    Google Scholar 

  • Huff, F. A., Shipp, W. L., 1969: Spatial correlations of storm, monthly, and seasonal precipitation.J. Appl. Meteor. 8, 542–550.

    Google Scholar 

  • Jolliffe, I. T., 1986:Principal Component Analysis. New York: Springer 271 pp.

    Google Scholar 

  • Jolliffe, I. T., 1987: Rotation of principal components: some comments.J. Climatol. 7, 507–510.

    Google Scholar 

  • Kaiser, H. F., 1958: The varimax criterion for analytic rotation in factor analysis.Psychometrika 23, 187–200.

    Google Scholar 

  • Katz, R. W., 1981: On some criteria for estimating the order of a Markov chain.Technometrics 23, 243–249.

    Google Scholar 

  • Katz, R. W., 1982: Statistical evaluation of climate experiments with general circulation models: a parametric timeseries modeling approach.J. Atmos. Sci. 39, 1446–1455.

    Google Scholar 

  • Katz, R. W., 1985: Probabilistic models. In: A. H. Murphy and R. W. Katz, eds.,Probability, Statistics, and Decision Making in the Atmospheric Sciences. Boulder: Westview, 261–288.

    Google Scholar 

  • Kim, J.-W., Chang, J.-T., Baker, N. L., Wilks, D. S., Gates, W. L., 1984: The statistical problem of climate inversion: determination of the relationship between local and largescale climate.Mon. Wea. Rev. 112, 2069–2077.

    Google Scholar 

  • Kutzbach, J. E., 1967: Empirical eigenvectors of sea-level pressure, surface temperature and precipitation complexes over North America.J. Appl. Meteor. 6, 791–802.

    Google Scholar 

  • Leith, C. E., 1973: The standard error of time-average estimates of climatic means.J. Appl. Meteor. 12, 1066–1069.

    Google Scholar 

  • Mearns, L. O., Katz, R. W., Schneider, S. H., 1984: Extreme high-temperature events: changes in their probabilities with changes in mean temperature.J. Climate. Appl. Meteor. 23, 1601–1613.

    Google Scholar 

  • Mahrt, L., 1987: Grid-averaged fluxes.Mon. Wea. Rev. 115, 1550–1560.

    Google Scholar 

  • Neild, R. E., Richman, H. N., Seeley, M. W., 1979: Impacts of different types of temperature change on the growing season for maize.Agric. Meteor. 20, 367–374.

    Google Scholar 

  • Parry, M. L., Carter, T. R., 1985: The effect of climatic variations on agricultural risk.Climatic Change 7, 95–110.

    Google Scholar 

  • Richman, M. B., 1981: Obliquely rotated principal components: An improved meteorological map typing technique?J. Appl. Meteor. 20, 1145–1159.

    Google Scholar 

  • Richman, M. B., 1986: Rotation of principal components.J. Climatol. 6, 293–335.

    Google Scholar 

  • Santer, B., 1985: The use of general circulation models in climate impact analysis—a preliminary study of the impacts of a CO2-induced climatic change on West European agriculture.Climatic Change 7, 71–93.

    Google Scholar 

  • Schwarz, G., 1978: Estimating the dimension of a model.Ann. Stat. 6, 461–464.

    Google Scholar 

  • Terjung, W. H., Livermann, D. M., Hayes, J. T., 1984: Climatic change and water requirements for grain corn in the North American Great Plains.Climatic Change 6, 193–220.

    Google Scholar 

  • Waggoner, P. E., 1983: Agriculture and a Climate Changed by More Carbon Dioxide. In: Carbon Dioxide Assessment Committee,Changing Climate. Washington, D.C.: National Academy Press, 383–418.

    Google Scholar 

  • Waymire, E., Gupta, V. K., 1981: The mathematical structure of rainfall representation. 1. A review of stochastic rainfall models.Wat. Resour. Res. 17, 1261–1272.

    Google Scholar 

  • Wetzel, P. J., Chang, J.-T., 1987: Concerning the relationship between evapotranspiration and soil moisture.J. Climate Appl. Meteor. 26, 18–27.

    Google Scholar 

  • Wilks, D. S., 1986: Specification of Local Surface Weather Elements from Large-Scale General Circulation Model Information, with Application to Agricultural Impact Assessment. SCIL Report 86-1, Department of Atmospheric Sciences, Oregon State University, Corvallis OR 9733. 233 pp.

    Google Scholar 

  • Wilks, D. S., 1988: Estimating the consequences of CO2-induced climatic change on North American grain agriculture using general circulation model information.Climatic Change 13, 19–42.

    Google Scholar 

  • Williams, G. D. V., 1985: Estimated bioresource sensitivity to climatic change in Alberta, Canada.Climatic Change 7, 5–69

    Google Scholar 

  • World Climate Applications Programme, 1984: Report of the WMO/UNEP/ICSU-SCOPE expert meeting on the reliability of crop-climate models for assessing the impacts of climatic change and variability. Geneva: WMO, 31 pp.

    Google Scholar 

  • Zawadzki, I. I., 1973: Statistical properties of precipitation patterns.J. Appl. Meteor. 12, 459–472.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 3 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilks, D.S. Statistical specification of local surface weather elements from large-scale information. Theor Appl Climatol 40, 119–134 (1989). https://doi.org/10.1007/BF00866175

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00866175

Keywords

Navigation