Journal of engineering physics

, Volume 32, Issue 3, pp 310–313 | Cite as

Mathematical model of column drying

  • V. A. Titov
  • G. K. Lisovaya
  • G. I. Shishkin


Differential equations are proposed to describe the drying of a finely disperse homogeneous material in a pneumatic drying column. A method of numerical solution is suggested.


Differential Equation Mathematical Model Statistical Physic Drying Homogeneous Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    I. M. Fedorov, Theory and Calculation of Drying Processes under Fluidized Conditions [in Russian], Gosénergoizdat (1954).Google Scholar
  2. 2.
    V. A. Filippov and P. I. Shishov, in: Aerodynamics, Heat and Mass Transfer in Disperse Flows [in Russian], Nauka, Moscow (1967), p. 12.Google Scholar
  3. 3.
    V. A. Sheiman and V. I. Kasper, Inzh.-Fiz. Zh.,6, No. 3 (1963).Google Scholar
  4. 4.
    I. L. Lyuboshits, V. A. Sheiman, and É. G. Tutova, Heat-Transfer Apparatus of Fluidized-Bed Type [in Russian], Nauka i Tekhnika, Minsk (1969).Google Scholar
  5. 5.
    Ya. Valkharzh, Inzh.-Fiz. Zh.,5, No. 11 (1962).Google Scholar
  6. 6.
    A. V. Lykov, Inzh.-Fiz. Zh.,18, No. 4 (1970).Google Scholar
  7. 7.
    N. N. Bakhvalov, Numerical Methods [in Russian], Vol. 1, Nauka, Moscow (1973).Google Scholar
  8. 8.
    G. K. Lisovaya and K. N. Shabalin, Khim. Prom., No. 11 (1969).Google Scholar

Copyright information

© Plenum Publishing Corporation 1977

Authors and Affiliations

  • V. A. Titov
    • 1
    • 2
  • G. K. Lisovaya
    • 1
    • 2
  • G. I. Shishkin
    • 1
    • 2
  1. 1.Institute of Mathematics and Mechanics, Ural Scientific CenterAcademy of Sciences of the USSRUSSR
  2. 2.Ural Polytechnic InstituteSverdlovsk

Personalised recommendations