Skip to main content
Log in

The group of sunshine modes on any inclined surface

  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Summary

It is easy to compute the diurnal arc or day length. We show that the same simplicity exists for the “solar arc” on an inclined surface, i.e. the theoretical interval during which it sees the sun. By transposing the daily extraterrestrial irradiance onto the celestial sphere, we demonstrate the concept of image, sunshine modes, transitions from one mode to another and annual sequence of modes which are, in a sense, the generalization of astronomical seasons for inclined surfaces. The modes are the elements of a group, or the focus of the theory. We give the foundation of a simple and exhaustive theory on the subject for any surface the following explicit formulae: image, mode, declination of transition between two modes, sunrise and sunset, solar arc or extraterrestrial sunshine, and daily irradiance. This subject has been previously broached in some infrequently referenced papers as well as in more recent papers by Revfeim (1976, 1978, 1982), Swift (1976), and Sato (1984). However, due to their lack of structure, those contributions to a geometrical theory have been largely neglected and the empirical point of view still prevails.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Dogniaux, R., Grueter, J. W., Kasten, F., Page, J. K., Perrin de Brichambaut, C., Treble, F. C., Palz, W., 1984: Solar meteorology (Units and symbols).Int. J. Solar Energy 2, 249–255.

    Google Scholar 

  • Duffie, J. A., Beckman, W. A., 1980:Solar Engineering of Thermal Processes. New York: John Wiley, 761 pp.

    Google Scholar 

  • Fribourg, H. A., 1972: Quantification of the aspect parameter in ecological site characterizations.Ecology 53, 5, 977–979.

    Google Scholar 

  • Gleeson, T. A., 1951: On the theory of cros-valley winds arising from heating of slopes.J. Meteor. 8, 398–405.

    Google Scholar 

  • Iqbal, M., 1983:Introduction to Solar Radiation. Toronto: Academic Press, 390 pp.

    Google Scholar 

  • Jones, R. E., 1980: Effects of overhang shading of windows having arbitrary azimuth.Solar Energy,24, 305–312.

    Google Scholar 

  • Kimball, H. H., 1919: Variations in the total and luminous solar radiation with geographical position in the United States.Mon. Wea. Rev.,47, 11, 769–793.

    Google Scholar 

  • Klein, S. A., 1977: Calculation of monthly average insolation on tilted surfaces.Solar Energy 19, 325–329.

    Google Scholar 

  • Kondratyev, K. Ya., 1969:Radiation in the Atmosphere. New York: Academic Press, 912 pp.

    Google Scholar 

  • Kondratyev, K. Ya., 1977: Radiation regime of inclined surfaces. W. M. O., Tech. Note 152, 82 pp.

  • Lee, R., 1962: Theory of the “equivalent slope”.Mon. Wea. Rev.,90, 4, 165–166.

    Google Scholar 

  • Lee, R., 1963: Evaluation of solar beam irradiation as a climatic parameter of mountain watersheds. Hydrology Papers No. 2, 50 pp.

  • Lelouchier, P., 1962: Etude écologique de la vallée de l'Hermeton.Lejeunia 6, Liège, Belgique, 97 pp.

  • Lelouchier, P., 1988: La détermination de la durée d'insolation théorique d'une surface inclinée par la méthode de Kondratyev. In Erpicum (Eds.), Actes des Journées de Climatologie, 5–7 novembre 1987, Université de Liège, Laboratoire de géographie physique, Liège, Belgique, 165–170.

    Google Scholar 

  • List, J., 1963:Smithsonian Meteorological Tables. 6th rev. Ed., Washington, D.C.

  • Okanoue, M., 1957: On the intensity of the solar radiation on any slope.J. Japan. Forest., 435–437.

  • Okanoue, M., Makijama, M., 1958: Computational of amount of sunshine received on a slope.J. Japan. Forest., 40–41.

  • Oke, T. R., 1987:Boundary Layer Climates. London: Methuen, 435 pp.

    Google Scholar 

  • Page, J. K., (Eds.), 1986:Prediction of Solar Radiation on Inclined Surfaces. Dordrecht: D. Reidel, 459 pp.

    Google Scholar 

  • Revfeim, K. J. A., 1976: Solar radiation at a site of known orientation on the earth's surface.J. Appl. Meteor. 15, 651–656.

    Google Scholar 

  • Revfeim, K. J. A., 1978: A simple procedure for estimating global daily radiation on any surface.J. Appl. Meteor. 17, 1126–1131.

    Google Scholar 

  • Revfeim, K. J. A., 1982: Simplified relationships for estimating solar radiation incident on any flat surface.Solar Energy 28, 509–517.

    Google Scholar 

  • Robinson, N., 1966:Solar Radiation. Amsterdam: Elsevier, 347 pp.

    Google Scholar 

  • Sato, T., 1984: A computational method of the direct solar radiation and the sunshine duration on an arbitrary inclined plane.J. Meteor. Soc. Japan 62, 1, 193–198.

    Google Scholar 

  • Seemann, J., Chirkov, Y. I., Lomas, J., Primault, B., 1979:Agrometeorology. Berlin, Springer, 324 pp.

    Google Scholar 

  • Sellers, W. D., 1965:Physical Climatology. The University of Chicago Press, 272 pp.

  • Swift, L. W. J. R., 1976: Algorithm for solar radiation on mountain slopes.Water Resources Research 12, 1, 108–112.

    Google Scholar 

  • Unna, P. J. H., 1947: Angle of incidence of Sun's ray.Nature 160, 713–714.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 2 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lelouchier, P. The group of sunshine modes on any inclined surface. Theor Appl Climatol 44, 47–55 (1991). https://doi.org/10.1007/BF00865551

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00865551

Keywords

Navigation